These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


324 related items for PubMed ID: 7626622

  • 1. Mutagenesis at a highly conserved tyrosine in monoamine oxidase B affects FAD incorporation and catalytic activity.
    Zhou BP, Lewis DA, Kwan SW, Kirksey TJ, Abell CW.
    Biochemistry; 1995 Jul 25; 34(29):9526-31. PubMed ID: 7626622
    [Abstract] [Full Text] [Related]

  • 2. Characterization of a highly conserved FAD-binding site in human monoamine oxidase B.
    Zhou BP, Wu B, Kwan SW, Abell CW.
    J Biol Chem; 1998 Jun 12; 273(24):14862-8. PubMed ID: 9614088
    [Abstract] [Full Text] [Related]

  • 3. Arginine-42 and threonine-45 are required for FAD incorporation and catalytic activity in human monoamine oxidase B.
    Kirksey TJ, Kwan SW, Abell CW.
    Biochemistry; 1998 Sep 01; 37(35):12360-6. PubMed ID: 9724550
    [Abstract] [Full Text] [Related]

  • 4. Characterization of a dinucleotide-binding site in monoamine oxidase B by site-directed mutagenesis.
    Kwan SW, Lewis DA, Zhou BP, Abell CW.
    Arch Biochem Biophys; 1995 Jan 10; 316(1):385-91. PubMed ID: 7840641
    [Abstract] [Full Text] [Related]

  • 5. Tyrosine residues near the FAD binding site are critical for FAD binding and for the maintenance of the stable and active conformation of rat monoamine oxidase A.
    Ma J, Ito A.
    J Biochem; 2002 Jan 10; 131(1):107-11. PubMed ID: 11754741
    [Abstract] [Full Text] [Related]

  • 6. Flavinylation of monoamine oxidase B.
    Zhou BP, Lewis DA, Kwan SW, Abell CW.
    J Biol Chem; 1995 Oct 06; 270(40):23653-60. PubMed ID: 7559533
    [Abstract] [Full Text] [Related]

  • 7. Effects of carboxyl-terminal truncations on the activity and solubility of human monoamine oxidase B.
    Rebrin I, Geha RM, Chen K, Shih JC.
    J Biol Chem; 2001 Aug 03; 276(31):29499-506. PubMed ID: 11371556
    [Abstract] [Full Text] [Related]

  • 8. Investigation on the structure of the active site of monoamine oxidase-B by affinity labeling with the selective inhibitor lazabemide and by site-directed mutagenesis.
    Cesura AM, Gottowik J, Lahm HW, Lang G, Imhof R, Malherbe P, Röthlisberger U, Da Prada M.
    Eur J Biochem; 1996 Mar 15; 236(3):996-1002. PubMed ID: 8665924
    [Abstract] [Full Text] [Related]

  • 9. The FAD binding sites of human monoamine oxidases A and B.
    Edmondson DE, Binda C, Mattevi A.
    Neurotoxicology; 2004 Jan 15; 25(1-2):63-72. PubMed ID: 14697881
    [Abstract] [Full Text] [Related]

  • 10. The FAD binding sites of human liver monoamine oxidases A and B: investigation of the role of flavin ribityl side chain hydroxyl groups in the covalent flavinylation reaction and catalytic activities.
    Miller JR, Guan N, Hubalek F, Edmondson DE.
    Biochim Biophys Acta; 2000 Jan 03; 1476(1):27-32. PubMed ID: 10606764
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Characterisation of wild-type and mutant forms of human monoamine oxidase A and B expressed in a mammalian cell line.
    Gottowik J, Cesura AM, Malherbe P, Lang G, Da Prada M.
    FEBS Lett; 1993 Feb 08; 317(1-2):152-6. PubMed ID: 8428624
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. The structure of monoamine oxidase from Aspergillus niger provides a molecular context for improvements in activity obtained by directed evolution.
    Atkin KE, Reiss R, Koehler V, Bailey KR, Hart S, Turkenburg JP, Turner NJ, Brzozowski AM, Grogan G.
    J Mol Biol; 2008 Dec 31; 384(5):1218-31. PubMed ID: 18951902
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Analysis of conserved active site residues in monoamine oxidase A and B and their three-dimensional molecular modeling.
    Geha RM, Chen K, Wouters J, Ooms F, Shih JC.
    J Biol Chem; 2002 May 10; 277(19):17209-16. PubMed ID: 11861643
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Structure-based redesign of cofactor binding in putrescine oxidase.
    Kopacz MM, Rovida S, van Duijn E, Fraaije MW, Mattevi A.
    Biochemistry; 2011 May 17; 50(19):4209-17. PubMed ID: 21486042
    [Abstract] [Full Text] [Related]

  • 19. Covalent flavinylation is essential for efficient redox catalysis in vanillyl-alcohol oxidase.
    Fraaije MW, van den Heuvel RH, van Berkel WJ, Mattevi A.
    J Biol Chem; 1999 Dec 10; 274(50):35514-20. PubMed ID: 10585424
    [Abstract] [Full Text] [Related]

  • 20. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
    Waksman G, Krishna TS, Williams CH, Kuriyan J.
    J Mol Biol; 1994 Feb 25; 236(3):800-16. PubMed ID: 8114095
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.