These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
105 related items for PubMed ID: 7626798
1. Involvement of extracellular matrix in the formation of the inner ear. Gerchman E, Hilfer SR, Brown JW. Dev Dyn; 1995 Apr; 202(4):421-32. PubMed ID: 7626798 [Abstract] [Full Text] [Related]
2. Perturbation of extracellular matrix prevents association of the otic primordium with the posterior rhombencephalon and inhibits subsequent invagination. Visconti RP, Hilfer SR. Dev Dyn; 2002 Jan; 223(1):48-58. PubMed ID: 11803569 [Abstract] [Full Text] [Related]
3. Invagination of the otic placode: normal development and experimental manipulation. Hilfer SR, Esteves RA, Sanzo JF. J Exp Zool; 1989 Aug; 251(2):253-64. PubMed ID: 2769204 [Abstract] [Full Text] [Related]
5. Basal lamina heparan sulphate proteoglycan is involved in otic placode invagination in chick embryos. Moro-Balbás JA, Gato A, Alonso MI, Martín P, de la Mano A. Anat Embryol (Berl); 2000 Oct; 202(4):333-43. PubMed ID: 11000284 [Abstract] [Full Text] [Related]
6. Chondroitin sulphate proteoglycan is involved in lens vesicle morphogenesis in chick embryos. Gato A, Martin C, Alonso MI, Martinez-Alvarez C, Moro JA. Exp Eye Res; 2001 Oct; 73(4):469-78. PubMed ID: 11825019 [Abstract] [Full Text] [Related]
7. Dysmorphogenesis of the inner ear: disruption of extracellular matrix (ECM) formation by an L-proline analog in otic explants. Van de Water TR, Galinovic-Schwartz V. J Craniofac Genet Dev Biol; 1986 Oct; 6(2):113-29. PubMed ID: 3722338 [Abstract] [Full Text] [Related]
8. Distinct roles for hindbrain and paraxial mesoderm in the induction and patterning of the inner ear revealed by a study of vitamin-A-deficient quail. Kil SH, Streit A, Brown ST, Agrawal N, Collazo A, Zile MH, Groves AK. Dev Biol; 2005 Sep 01; 285(1):252-71. PubMed ID: 16039643 [Abstract] [Full Text] [Related]
9. Immunolocalization of basal lamina components during development of chick otic and optic primordia. Hilfer SR, Randolph GJ. Anat Rec; 1993 Mar 01; 235(3):443-52. PubMed ID: 8430914 [Abstract] [Full Text] [Related]
10. Differential requirements for FGF3, FGF8 and FGF10 during inner ear development. Zelarayan LC, Vendrell V, Alvarez Y, Domínguez-Frutos E, Theil T, Alonso MT, Maconochie M, Schimmang T. Dev Biol; 2007 Aug 15; 308(2):379-91. PubMed ID: 17601531 [Abstract] [Full Text] [Related]
11. A mesenchyme-free culture system to elucidate the mechanism of otic vesicle morphogenesis. Miura T, Shiota K, Morriss-Kay G. J Anat; 2004 Oct 15; 205(4):297-312. PubMed ID: 15447689 [Abstract] [Full Text] [Related]
12. Embryonic lung morphogenesis in organ culture: experimental evidence for a proteoglycan function in the extracellular matrix. Spooner BS, Bassett KE, Spooner BS. Trans Kans Acad Sci; 1993 Apr 15; 96(1-2):46-55. PubMed ID: 11537711 [Abstract] [Full Text] [Related]
13. Patterns of cell movement in early organ primordia of the chick embryo. Hilfer SR, Marrero L, Sheffield JB. Anat Rec; 1990 Aug 15; 227(4):508-17. PubMed ID: 2393102 [Abstract] [Full Text] [Related]
14. Junctionally restricted RhoA activity is necessary for apical constriction during phase 2 inner ear placode invagination. Sai X, Yonemura S, Ladher RK. Dev Biol; 2014 Oct 15; 394(2):206-16. PubMed ID: 25173873 [Abstract] [Full Text] [Related]
15. Effect of retinoic acid on otic capsule chondrogenesis in high-density culture suggests disruption of epithelial-mesenchymal interactions. Frenz DA, Liu W. Teratology; 1997 Oct 15; 56(4):233-40. PubMed ID: 9408973 [Abstract] [Full Text] [Related]
16. Role of the hindbrain in dorsoventral but not anteroposterior axial specification of the inner ear. Bok J, Bronner-Fraser M, Wu DK. Development; 2005 May 15; 132(9):2115-24. PubMed ID: 15788455 [Abstract] [Full Text] [Related]
17. Shaping, invagination, and closure of the chick embryo otic vesicle: scanning electron microscopic and quantitative study. Alvarez IS, Navascués J. Anat Rec; 1990 Nov 15; 228(3):315-26. PubMed ID: 2260786 [Abstract] [Full Text] [Related]
18. Spatial and temporal changes in chondroitin sulfate distribution in the sclerotome play an essential role in the formation of migration patterns of mouse neural crest cells. Kubota Y, Morita T, Kusakabe M, Sakakura T, Ito K. Dev Dyn; 1999 Jan 15; 214(1):55-65. PubMed ID: 9915576 [Abstract] [Full Text] [Related]
19. Determination of the embryonic inner ear. Noramly S, Grainger RM. J Neurobiol; 2002 Nov 05; 53(2):100-28. PubMed ID: 12382270 [Abstract] [Full Text] [Related]