These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
155 related items for PubMed ID: 7635653
1. Molecular characterization of a reduced glutathione transporter in the lens. Kannan R, Yi JR, Zlokovic BV, Kaplowitz N. Invest Ophthalmol Vis Sci; 1995 Aug; 36(9):1785-92. PubMed ID: 7635653 [Abstract] [Full Text] [Related]
2. Identification of a novel, sodium-dependent, reduced glutathione transporter in the rat lens epithelium. Kannan R, Yi JR, Tang D, Zlokovic BV, Kaplowitz N. Invest Ophthalmol Vis Sci; 1996 Oct; 37(11):2269-75. PubMed ID: 8843923 [Abstract] [Full Text] [Related]
3. Glutathione transport in immortalized HLE cells and expression of transport in HLE cell poly(A)+ RNA-injected Xenopus laevis oocytes. Kannan R, Bao Y, Mittur A, Andley UP, Kaplowitz N. Invest Ophthalmol Vis Sci; 1998 Jul; 39(8):1379-86. PubMed ID: 9660486 [Abstract] [Full Text] [Related]
4. Bidirectional glutathione transport by cultured human retinal pigment epithelial cells. Lu SC, Sun WM, Nagineni CN, Hooks JJ, Kannan R. Invest Ophthalmol Vis Sci; 1995 Nov; 36(12):2523-30. PubMed ID: 7591642 [Abstract] [Full Text] [Related]
5. Functional re-evaluation of the putative glutathione transporters, RcGshT and RsGshT. Li L, Lee TK, Ballatori N. Yale J Biol Med; 1997 Nov; 70(4):301-10. PubMed ID: 9626750 [Abstract] [Full Text] [Related]
6. Evidence for the existence of a sodium-dependent glutathione (GSH) transporter. Expression of bovine brain capillary mRNA and size fractions in Xenopus laevis oocytes and dissociation from gamma-glutamyltranspeptidase and facilitative GSH transporters. Kannan R, Yi JR, Tang D, Li Y, Zlokovic BV, Kaplowitz N. J Biol Chem; 1996 Apr 19; 271(16):9754-8. PubMed ID: 8621654 [Abstract] [Full Text] [Related]
7. Osmoregulatory alterations in myo-inositol uptake by bovine lens epithelial cells. Part 2: Cloning of a 626 bp cDNA portion of a Na+/myo-inositol cotransporter, an osmotic shock protein. Zhou C, Agarwal N, Cammarata PR. Invest Ophthalmol Vis Sci; 1994 Mar 19; 35(3):1236-42. PubMed ID: 8125734 [Abstract] [Full Text] [Related]
8. Dynamic regulation of GSH synthesis and uptake pathways in the rat lens epithelium. Li B, Li L, Donaldson PJ, Lim JC. Exp Eye Res; 2010 Feb 19; 90(2):300-7. PubMed ID: 19941852 [Abstract] [Full Text] [Related]
9. Bovine connexin44, a lens gap junction protein: molecular cloning, immunologic characterization, and functional expression. Gupta VK, Berthoud VM, Atal N, Jarillo JA, Barrio LC, Beyer EC. Invest Ophthalmol Vis Sci; 1994 Sep 19; 35(10):3747-58. PubMed ID: 8088962 [Abstract] [Full Text] [Related]
10. Modelling cortical cataractogenesis XXIV: uptake by the lens of glutathione injected into the rat. Stewart-DeHaan PJ, Dzialoszynski T, Trevithick JR. Mol Vis; 1999 Dec 22; 5():37. PubMed ID: 10617774 [Abstract] [Full Text] [Related]
11. Blood-to-lens transport of reduced glutathione in an in situ perfused guinea-pig eye. Zlokovic BV, Mackic JB, McComb JG, Kaplowitz N, Weiss MH, Kannan R. Exp Eye Res; 1994 Oct 22; 59(4):487-96. PubMed ID: 7859824 [Abstract] [Full Text] [Related]
12. Evidence that the rat hepatic mitochondrial carrier is distinct from the sinusoidal and canalicular transporters for reduced glutathione. Expression studies in Xenopus laevis oocytes. García-Ruiz C, Morales A, Colell A, Rodés J, Yi JR, Kaplowitz N, Fernández-Checa JC. J Biol Chem; 1995 Jul 07; 270(27):15946-9. PubMed ID: 7608148 [Abstract] [Full Text] [Related]
13. Differential expression of facilitative glucose transporters GLUT1 and GLUT3 in the lens. Merriman-Smith R, Donaldson P, Kistler J. Invest Ophthalmol Vis Sci; 1999 Dec 07; 40(13):3224-30. PubMed ID: 10586946 [Abstract] [Full Text] [Related]
14. Alterations in glutathione homeostasis in mutant Eisai hyperbilirubinemic rats. Lu SC, Cai J, Kuhlenkamp J, Sun WM, Takikawa H, Takenaka O, Horie T, Yi J, Kaplowitz N. Hepatology; 1996 Jul 07; 24(1):253-8. PubMed ID: 8707271 [Abstract] [Full Text] [Related]
15. Expression of Bcl-2 increases intracellular glutathione by inhibiting methionine-dependent GSH efflux. Meredith MJ, Cusick CL, Soltaninassab S, Sekhar KS, Lu S, Freeman ML. Biochem Biophys Res Commun; 1998 Jul 30; 248(3):458-63. PubMed ID: 9703946 [Abstract] [Full Text] [Related]
16. Cloning, expression, and localization of a mouse retinal gamma-aminobutyric acid transporter. Ruiz M, Egal H, Sarthy V, Qian X, Sarkar HK. Invest Ophthalmol Vis Sci; 1994 Nov 30; 35(12):4039-48. PubMed ID: 7960586 [Abstract] [Full Text] [Related]
17. Inhibition of rat sinusoidal GSH transporter by thioethers: specificity, sidedness, and kinetics. Fernández-Checa JC, García-Ruiz C, Colell A, Yi JR, Kaplowitz N. Am J Physiol; 1996 Jun 30; 270(6 Pt 1):G969-75. PubMed ID: 8764204 [Abstract] [Full Text] [Related]
18. Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus oocytes expressing excitatory amino acid carrier 1 (EAAC1). Dowd LA, Coyle AJ, Rothstein JD, Pritchett DB, Robinson MB. Mol Pharmacol; 1996 Mar 30; 49(3):465-73. PubMed ID: 8643086 [Abstract] [Full Text] [Related]
19. Expression of carbonic anhydrase isozyme III in the ciliary processes and lens. Jampel HD, Chen X, Chue C, Zack DJ. Invest Ophthalmol Vis Sci; 1997 Feb 30; 38(2):539-43. PubMed ID: 9040488 [Abstract] [Full Text] [Related]
20. A monocarboxylate transporter MCT1 is located at the basolateral pole of rat jejunum. Orsenigo MN, Tosco M, Bazzini C, Laforenza U, Faelli A. Exp Physiol; 1999 Nov 30; 84(6):1033-42. PubMed ID: 10564700 [Abstract] [Full Text] [Related] Page: [Next] [New Search]