These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effect of physical training on bone adaptation in three zones of the rat tibia. Bourrin S, Palle S, Pupier R, Vico L, Alexandre C. J Bone Miner Res; 1995 Nov; 10(11):1745-52. PubMed ID: 8592952 [Abstract] [Full Text] [Related]
5. Inhibition of bone resorption by pamidronate cannot restore normal gain in cortical bone mass and strength in tail-suspended rapidly growing rats. Kodama Y, Nakayama K, Fuse H, Fukumoto S, Kawahara H, Takahashi H, Kurokawa T, Sekiguchi C, Nakamura T, Matsumoto T. J Bone Miner Res; 1997 Jul; 12(7):1058-67. PubMed ID: 9200005 [Abstract] [Full Text] [Related]
6. Effects of tower climbing exercise on bone mass, strength, and turnover in growing rats. Notomi T, Okimoto N, Okazaki Y, Tanaka Y, Nakamura T, Suzuki M. J Bone Miner Res; 2001 Jan; 16(1):166-74. PubMed ID: 11149481 [Abstract] [Full Text] [Related]
8. Bone histomorphometric comparison of rat tibial metaphysis after 7-day tail suspension vs. 7-day spaceflight. Vico L, Novikov VE, Very JM, Alexandre C. Aviat Space Environ Med; 1991 Jan; 62(1):26-31. PubMed ID: 1996927 [Abstract] [Full Text] [Related]
11. Climbing exercise increases bone mass and trabecular bone turnover through transient regulation of marrow osteogenic and osteoclastogenic potentials in mice. Mori T, Okimoto N, Sakai A, Okazaki Y, Nakura N, Notomi T, Nakamura T. J Bone Miner Res; 2003 Nov; 18(11):2002-9. PubMed ID: 14606513 [Abstract] [Full Text] [Related]
12. Effects of free mobilization and low- to high-intensity treadmill running on the immobilization-induced bone loss in rats. Kannus P, Sievänen H, Järvinen TL, Järvinen M, Kvist M, Oja P, Vuori I, Jozsa L. J Bone Miner Res; 1994 Oct; 9(10):1613-9. PubMed ID: 7817808 [Abstract] [Full Text] [Related]
13. Rat hindlimb unloading by tail suspension reduces osteoblast differentiation, induces IL-6 secretion, and increases bone resorption in ex vivo cultures. Grano M, Mori G, Minielli V, Barou O, Colucci S, Giannelli G, Alexandre C, Zallone AZ, Vico L. Calcif Tissue Int; 2002 Mar; 70(3):176-85. PubMed ID: 11907715 [Abstract] [Full Text] [Related]
15. Detraining effects on bone mass in young male rats. Kiuchi A, Arai Y, Katsuta S. Int J Sports Med; 1998 May; 19(4):245-9. PubMed ID: 9657363 [Abstract] [Full Text] [Related]
16. Effects of immobilization, three forms of remobilization, and subsequent deconditioning on bone mineral content and density in rat femora. Kannus P, Järvinen TL, Sievänen H, Kvist M, Rauhaniemi J, Maunu VM, Hurme T, Jozsa L, Järvinen M. J Bone Miner Res; 1996 Sep; 11(9):1339-46. PubMed ID: 8864909 [Abstract] [Full Text] [Related]
17. Influence of exercise on cancellous bone of the aged female rat. Yeh JK, Aloia JF, Chen MM, Tierney JM, Sprintz S. J Bone Miner Res; 1993 Sep; 8(9):1117-25. PubMed ID: 8237482 [Abstract] [Full Text] [Related]
18. Skeletal alterations in hypophysectomized rats: I. A histomorphometric study on tibial cancellous bone. Yeh JK, Chen MM, Aloia JF. Anat Rec; 1995 Apr; 241(4):505-12. PubMed ID: 7604965 [Abstract] [Full Text] [Related]
19. Aerobic exercise as a countermeasure for microgravity-induced bone loss and muscle atrophy in a rat hindlimb suspension model. Norman TL, Bradley-Popovich G, Clovis N, Cutlip RG, Bryner RW. Aviat Space Environ Med; 2000 Jun; 71(6):593-8. PubMed ID: 10870818 [Abstract] [Full Text] [Related]