These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
293 related items for PubMed ID: 7646896
21. Neurogranin/RC3 enhances long-term potentiation and learning by promoting calcium-mediated signaling. Huang KP, Huang FL, Jäger T, Li J, Reymann KG, Balschun D. J Neurosci; 2004 Nov 24; 24(47):10660-9. PubMed ID: 15564582 [Abstract] [Full Text] [Related]
23. Domoic acid induces a long-lasting enhancement of CA1 field responses and impairs tetanus-induced long-term potentiation in rat hippocampal slices. Qiu S, Jebelli AK, Ashe JH, Currás-Collazo MC. Toxicol Sci; 2009 Sep 01; 111(1):140-50. PubMed ID: 19564213 [Abstract] [Full Text] [Related]
24. Ca2+/calmodulin-dependent protein kinase II and protein kinase C activities mediate extracellular glucose-regulated hippocampal synaptic efficacy. Moriguchi S, Oomura Y, Shioda N, Han F, Hori N, Aou S, Fukunaga K. Mol Cell Neurosci; 2011 Jan 01; 46(1):101-7. PubMed ID: 20807573 [Abstract] [Full Text] [Related]
25. Distinct synaptic loci of Ca2+/calmodulin-dependent protein kinase II necessary for long-term potentiation and depression. Stanton PK, Gage AT. J Neurophysiol; 1996 Sep 01; 76(3):2097-101. PubMed ID: 8890320 [Abstract] [Full Text] [Related]
26. Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation. Makhinson M, Chotiner JK, Watson JB, O'Dell TJ. J Neurosci; 1999 Apr 01; 19(7):2500-10. PubMed ID: 10087064 [Abstract] [Full Text] [Related]
27. Taurine-induced synaptic potentiation and the late phase of long-term potentiation are related mechanistically. del Olmo N, Handler A, Alvarez L, Bustamante J, Martín del Río R, Solís JM. Neuropharmacology; 2003 Jan 01; 44(1):26-39. PubMed ID: 12559119 [Abstract] [Full Text] [Related]
28. Block of induction and maintenance of calcium-induced LTP by inhibition of protein kinase C in postsynaptic neuron in hippocampal CA1 region. Cheng G, Rong XW, Feng TP. Brain Res; 1994 May 23; 646(2):230-4. PubMed ID: 8069668 [Abstract] [Full Text] [Related]
29. Strong calcium entry activates mitochondrial superoxide generation, upregulating kinase signaling in hippocampal neurons. Hongpaisan J, Winters CA, Andrews SB. J Neurosci; 2004 Dec 01; 24(48):10878-87. PubMed ID: 15574738 [Abstract] [Full Text] [Related]
30. Altered signaling pathways underlying abnormal hippocampal synaptic plasticity in the Ts65Dn mouse model of Down syndrome. Siarey RJ, Kline-Burgess A, Cho M, Balbo A, Best TK, Harashima C, Klann E, Galdzicki Z. J Neurochem; 2006 Aug 01; 98(4):1266-77. PubMed ID: 16895585 [Abstract] [Full Text] [Related]
31. Persistent phosphorylation by protein kinase Mzeta maintains late-phase long-term potentiation. Serrano P, Yao Y, Sacktor TC. J Neurosci; 2005 Feb 23; 25(8):1979-84. PubMed ID: 15728837 [Abstract] [Full Text] [Related]
32. Differential responses of protein kinase C substrates (MARCKS, neuromodulin, and neurogranin) phosphorylation to calmodulin and S100. Sheu FS, Huang FL, Huang KP. Arch Biochem Biophys; 1995 Jan 10; 316(1):335-42. PubMed ID: 7840634 [Abstract] [Full Text] [Related]
33. Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Blitzer RD, Connor JH, Brown GP, Wong T, Shenolikar S, Iyengar R, Landau EM. Science; 1998 Jun 19; 280(5371):1940-2. PubMed ID: 9632393 [Abstract] [Full Text] [Related]
34. Parallel kinase cascades are involved in the induction of LTP at hippocampal CA1 synapses. Wikström MA, Matthews P, Roberts D, Collingridge GL, Bortolotto ZA. Neuropharmacology; 2003 Nov 19; 45(6):828-36. PubMed ID: 14529720 [Abstract] [Full Text] [Related]
35. Mitogen-activated protein kinase regulates early phosphorylation and delayed expression of Ca2+/calmodulin-dependent protein kinase II in long-term potentiation. Giovannini MG, Blitzer RD, Wong T, Asoma K, Tsokas P, Morrison JH, Iyengar R, Landau EM. J Neurosci; 2001 Sep 15; 21(18):7053-62. PubMed ID: 11549715 [Abstract] [Full Text] [Related]
36. Persistent signalling and changes in presynaptic function in long-term potentiation. Malgaroli A, Malinow R, Schulman H, Tsien RW. Ciba Found Symp; 1992 Sep 15; 164():176-91; discussion 192-6. PubMed ID: 1327679 [Abstract] [Full Text] [Related]
37. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Lledo PM, Hjelmstad GO, Mukherji S, Soderling TR, Malenka RC, Nicoll RA. Proc Natl Acad Sci U S A; 1995 Nov 21; 92(24):11175-9. PubMed ID: 7479960 [Abstract] [Full Text] [Related]
38. Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. Ordyan M, Bartol T, Kennedy M, Rangamani P, Sejnowski T. PLoS Comput Biol; 2020 Jul 21; 16(7):e1008015. PubMed ID: 32678848 [Abstract] [Full Text] [Related]
39. Specificity of protein kinase inhibitor peptides and induction of long-term potentiation. Hvalby O, Hemmings HC, Paulsen O, Czernik AJ, Nairn AC, Godfraind JM, Jensen V, Raastad M, Storm JF, Andersen P. Proc Natl Acad Sci U S A; 1994 May 24; 91(11):4761-5. PubMed ID: 8197132 [Abstract] [Full Text] [Related]
40. CaMKII "autonomy" is required for initiating but not for maintaining neuronal long-term information storage. Buard I, Coultrap SJ, Freund RK, Lee YS, Dell'Acqua ML, Silva AJ, Bayer KU. J Neurosci; 2010 Jun 16; 30(24):8214-20. PubMed ID: 20554872 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]