These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
132 related items for PubMed ID: 7649999
1. Characterization of the effector-specifying domain of Rac involved in NADPH oxidase activation. Kwong CH, Adams AG, Leto TL. J Biol Chem; 1995 Aug 25; 270(34):19868-72. PubMed ID: 7649999 [Abstract] [Full Text] [Related]
2. Regulation of the human neutrophil NADPH oxidase by rho-related G-proteins. Kwong CH, Malech HL, Rotrosen D, Leto TL. Biochemistry; 1993 Jun 01; 32(21):5711-7. PubMed ID: 8504089 [Abstract] [Full Text] [Related]
3. A 68-kDa kinase and NADPH oxidase component p67phox are targets for Cdc42Hs and Rac1 in neutrophils. Prigmore E, Ahmed S, Best A, Kozma R, Manser E, Segal AW, Lim L. J Biol Chem; 1995 May 05; 270(18):10717-22. PubMed ID: 7738010 [Abstract] [Full Text] [Related]
4. The Rac target NADPH oxidase p67phox interacts preferentially with Rac2 rather than Rac1. Dorseuil O, Reibel L, Bokoch GM, Camonis J, Gacon G. J Biol Chem; 1996 Jan 05; 271(1):83-8. PubMed ID: 8550629 [Abstract] [Full Text] [Related]
5. Cryptic Rac-binding and p21(Cdc42Hs/Rac)-activated kinase phosphorylation sites of NADPH oxidase component p67(phox). Ahmed S, Prigmore E, Govind S, Veryard C, Kozma R, Wientjes FB, Segal AW, Lim L. J Biol Chem; 1998 Jun 19; 273(25):15693-701. PubMed ID: 9624165 [Abstract] [Full Text] [Related]
6. Membrane association of Rac is required for high activity of the respiratory burst oxidase. Kreck ML, Freeman JL, Abo A, Lambeth JD. Biochemistry; 1996 Dec 10; 35(49):15683-92. PubMed ID: 8961931 [Abstract] [Full Text] [Related]
7. Rac translocates independently of the neutrophil NADPH oxidase components p47phox and p67phox. Evidence for its interaction with flavocytochrome b558. Heyworth PG, Bohl BP, Bokoch GM, Curnutte JT. J Biol Chem; 1994 Dec 09; 269(49):30749-52. PubMed ID: 7982999 [Abstract] [Full Text] [Related]
8. Interaction of Rac with p67phox and regulation of phagocytic NADPH oxidase activity. Diekmann D, Abo A, Johnston C, Segal AW, Hall A. Science; 1994 Jul 22; 265(5171):531-3. PubMed ID: 8036496 [Abstract] [Full Text] [Related]
9. Requirement for posttranslational processing of Rac GTP-binding proteins for activation of human neutrophil NADPH oxidase. Heyworth PG, Knaus UG, Xu X, Uhlinger DJ, Conroy L, Bokoch GM, Curnutte JT. Mol Biol Cell; 1993 Mar 22; 4(3):261-9. PubMed ID: 8387355 [Abstract] [Full Text] [Related]
10. Rac "insert region" is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65. Freeman JL, Abo A, Lambeth JD. J Biol Chem; 1996 Aug 16; 271(33):19794-801. PubMed ID: 8702687 [Abstract] [Full Text] [Related]
11. Rac binding to p67(phox). Structural basis for interactions of the Rac1 effector region and insert region with components of the respiratory burst oxidase. Nisimoto Y, Freeman JL, Motalebi SA, Hirshberg M, Lambeth JD. J Biol Chem; 1997 Jul 25; 272(30):18834-41. PubMed ID: 9228059 [Abstract] [Full Text] [Related]
12. Post-translational processing of rac p21s is important both for their interaction with the GDP/GTP exchange proteins and for their activation of NADPH oxidase. Ando S, Kaibuchi K, Sasaki T, Hiraoka K, Nishiyama T, Mizuno T, Asada M, Nunoi H, Matsuda I, Matsuura Y. J Biol Chem; 1992 Dec 25; 267(36):25709-13. PubMed ID: 1464587 [Abstract] [Full Text] [Related]
13. Differing structural requirements for GTPase-activating protein responsiveness and NADPH oxidase activation by Rac. Xu X, Barry DC, Settleman J, Schwartz MA, Bokoch GM. J Biol Chem; 1994 Sep 23; 269(38):23569-74. PubMed ID: 8089125 [Abstract] [Full Text] [Related]
14. Rac1 disrupts p67phox/p40phox binding: a novel role for Rac in NADPH oxidase activation. Rinckel LA, Faris SL, Hitt ND, Kleinberg ME. Biochem Biophys Res Commun; 1999 Sep 16; 263(1):118-22. PubMed ID: 10486263 [Abstract] [Full Text] [Related]
15. A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. Martin GA, Bollag G, McCormick F, Abo A. EMBO J; 1995 May 01; 14(9):1970-8. PubMed ID: 7744004 [Abstract] [Full Text] [Related]
16. Inhibition of NADPH oxidase activation by synthetic peptides mapping within the carboxyl-terminal domain of small GTP-binding proteins. Lack of amino acid sequence specificity and importance of polybasic motif. Joseph G, Gorzalczany Y, Koshkin V, Pick E. J Biol Chem; 1994 Nov 18; 269(46):29024-31. PubMed ID: 7961867 [Abstract] [Full Text] [Related]
18. Mutational analysis of novel effector domains in Rac1 involved in the activation of nicotinamide adenine dinucleotide phosphate (reduced) oxidase. Toporik A, Gorzalczany Y, Hirshberg M, Pick E, Lotan O. Biochemistry; 1998 May 19; 37(20):7147-56. PubMed ID: 9585526 [Abstract] [Full Text] [Related]
19. Structural requirements for PAK activation by Rac GTPases. Knaus UG, Wang Y, Reilly AM, Warnock D, Jackson JH. J Biol Chem; 1998 Aug 21; 273(34):21512-8. PubMed ID: 9705280 [Abstract] [Full Text] [Related]
20. Production of recombinant cytochrome b558 allows reconstitution of the phagocyte NADPH oxidase solely from recombinant proteins. Rotrosen D, Yeung CL, Katkin JP. J Biol Chem; 1993 Jul 05; 268(19):14256-60. PubMed ID: 8314788 [Abstract] [Full Text] [Related] Page: [Next] [New Search]