These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 765342

  • 1. Selective chemical modification of Escherichia coli elongation factor G. N-Ethylmaleimide modification of a cysteine essential for nucleotide binding.
    Rohrbach MS, Bodley JW.
    J Biol Chem; 1976 Feb 25; 251(4):930-3. PubMed ID: 765342
    [Abstract] [Full Text] [Related]

  • 2. Equilibrium measurements of the interactions of guanine nucleotides with Escherichia coli elongation factor G and the ribosome.
    Baca OG, Rohrbach MS, Bodley JW.
    Biochemistry; 1976 Oct 19; 15(21):4570-4. PubMed ID: 788779
    [Abstract] [Full Text] [Related]

  • 3. A form of elongation factor G insensitive to N-ethyl-maleimide.
    Girbes T, Vazquez D, Modolell J.
    Mol Biol Rep; 1976 Apr 19; 2(5):401-6. PubMed ID: 775317
    [Abstract] [Full Text] [Related]

  • 4. The interaction of fusidic acid with peptidyl-transfer-ribonucleic-acid - ribosome complexes.
    San Millan MJ, Vazquez D, Modolell J.
    Eur J Biochem; 1975 Sep 15; 57(2):431-40. PubMed ID: 1100406
    [Abstract] [Full Text] [Related]

  • 5. Selective chemical modification of Escherichia coli elongation factor G: butanedione modification of an arginine essential for nucleotide binding.
    Rohrbach MS, Bodley JW.
    Biochemistry; 1977 Apr 05; 16(7):1360-3. PubMed ID: 14679
    [Abstract] [Full Text] [Related]

  • 6. Function of sulfhydryl groups in ribosome-elongation factor G reactions. Assignment of guanine nucleotide binding site to elongation factor G.
    Marsh RC, Chinali G, Parmeggiani A.
    J Biol Chem; 1975 Nov 10; 250(21):8344-52. PubMed ID: 172495
    [Abstract] [Full Text] [Related]

  • 7. Synthesis of guanosine 5'-di- and -triphosphate derivatives with modified terminal phosphates: effect on ribosome-elongation factor G-dependent reactions.
    Eckstein F, Bruns W, Parmeggiani A.
    Biochemistry; 1975 Nov 18; 14(23):5225-32. PubMed ID: 1103967
    [Abstract] [Full Text] [Related]

  • 8. Polypeptide-chain elongation promoted by guanyl-5'-yl imidodiphosphate.
    Girbes T, Vazquez D, Modolell J.
    Eur J Biochem; 1976 Aug 01; 67(1):257-65. PubMed ID: 786622
    [Abstract] [Full Text] [Related]

  • 9. The binding of the pyrophosphoryl transferase and the elongation factor Tu and G to ribosomes from Escherichia coli.
    Kleinert U, Richter D.
    FEBS Lett; 1975 Jul 15; 55(1):188-93. PubMed ID: 166884
    [No Abstract] [Full Text] [Related]

  • 10. The binding of Escherichia coli elongation factor G to the ribosome.
    Bodley JW, Weissbach H, Brot N.
    Methods Enzymol; 1974 Jul 15; 30():235-8. PubMed ID: 4605219
    [No Abstract] [Full Text] [Related]

  • 11. Detection of guanosine-nucleotide.elongation-factor-G complexes produced during the decay of guanosine-nucleotide.elongation-factor-G.Ribosome complexes.
    Girbes T, Vázquez D, Modolell J.
    Eur J Biochem; 1977 Dec 15; 81(3):473-81. PubMed ID: 340226
    [No Abstract] [Full Text] [Related]

  • 12. Binding interactions between radiolabeled Escherichia coli elongation factor G and the ribosome.
    Lin L, Bodley JW.
    J Biol Chem; 1976 Mar 25; 251(6):1795-8. PubMed ID: 767340
    [Abstract] [Full Text] [Related]

  • 13. Ribosomes cannot interact simultaneously with elongation factors EF Tu and EF G.
    Richman N, Bodley JW.
    Proc Natl Acad Sci U S A; 1972 Mar 25; 69(3):686-9. PubMed ID: 4551984
    [Abstract] [Full Text] [Related]

  • 14. Formation of fusidic acid-G factor-GDP-ribosome complex and the relationship to the inhibition of GTP hydrolysis.
    Okura A, Kinoshita T, Tanaka N.
    J Antibiot (Tokyo); 1971 Oct 25; 24(10):655-61. PubMed ID: 4945809
    [No Abstract] [Full Text] [Related]

  • 15. Elongation factor G interacts with both ribosomal subparticles.
    Girshovich AS, Kurtskhalia TV.
    FEBS Lett; 1978 Aug 15; 92(2):203-6. PubMed ID: 359351
    [No Abstract] [Full Text] [Related]

  • 16. The formation of guanosine-nucleotide - elongation-factor-G - ribosome complexes on free 70-S ribosomes, 50-S subunits, and polysomes. A comparative study.
    San-Millán MJ, Vázquez D, Modolell J.
    Eur J Biochem; 1977 May 16; 75(2):593-600. PubMed ID: 328279
    [No Abstract] [Full Text] [Related]

  • 17. Evidence that fusidic acid inhibits the binding of aminoacyl-tRNA to the donor as well as the acceptor site of the ribosomes.
    Otaka T, Kaji A.
    Eur J Biochem; 1973 Sep 21; 38(1):46-53. PubMed ID: 4590123
    [No Abstract] [Full Text] [Related]

  • 18. Steady state kinetic analysis of the mechanism of guanosine triphosphate hydrolysis catalyzed by Escherichia coli elongation factor G and the ribosome.
    Rohrback MS, Bodley JW.
    Biochemistry; 1976 Oct 19; 15(21):4565-9. PubMed ID: 9976
    [Abstract] [Full Text] [Related]

  • 19. The interaction of elongation factor G with N-acetylphenylalanyl transfer RNA-ribosome complexes.
    Modolell J, Cabrer B, Váquez D.
    Proc Natl Acad Sci U S A; 1973 Dec 19; 70(12):3561-5. PubMed ID: 4519646
    [Abstract] [Full Text] [Related]

  • 20. Effects of antibiotics, N-acetylaminoacyl-tRNA and other agents on the elongation-factor-Tu dependent and ribosome-dependent GTP hydrolysis promoted by 2'(3')-O-L-phenylalanyladenosine.
    Campuzano S, Modolell J.
    Eur J Biochem; 1981 Jun 19; 117(1):27-31. PubMed ID: 6114863
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.