These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
225 related items for PubMed ID: 7662337
1. Effect of lysozyme concentration, heating at 90 degrees C, and then incubation at chilled temperatures on growth from spores of non-proteolytic Clostridium botulinum. Peck MW, Fernandez PS. Lett Appl Microbiol; 1995 Jul; 21(1):50-4. PubMed ID: 7662337 [Abstract] [Full Text] [Related]
3. A predictive model that describes the effect of prolonged heating at 70 to 90 degrees C and subsequent incubation at refrigeration temperatures on growth from spores and toxigenesis by nonproteolytic Clostridium botulinum in the presence of lysozyme. Fernández PS, Peck MW. Appl Environ Microbiol; 1999 Aug; 65(8):3449-57. PubMed ID: 10427033 [Abstract] [Full Text] [Related]
6. Inhibitory effect of combinations of heat treatment, pH, and sodium chloride on a growth from spores of nonproteolytic Clostridium botulinum at refrigeration temperature. Graham AF, Mason DR, Peck MW. Appl Environ Microbiol; 1996 Jul; 62(7):2664-8. PubMed ID: 8779606 [Abstract] [Full Text] [Related]
9. Systematic Assessment of Nonproteolytic Clostridium botulinum Spores for Heat Resistance. Wachnicka E, Stringer SC, Barker GC, Peck MW. Appl Environ Microbiol; 2016 Oct 01; 82(19):6019-29. PubMed ID: 27474721 [Abstract] [Full Text] [Related]
10. Growth and formation of toxin by Clostridium botulinum in peeled, inoculated, vacuum-packed potatoes after a double pasteurization and storage at 25 degrees C. Lund BM, Graham AF, George SM. J Appl Bacteriol; 1988 Mar 01; 64(3):241-6. PubMed ID: 3290178 [Abstract] [Full Text] [Related]
11. Combined high pressure and thermal processing on inactivation of type A and proteolytic type B spores of Clostridium botulinum. Reddy NR, Marshall KM, Morrissey TR, Loeza V, Patazca E, Skinner GE, Krishnamurthy K, Larkin JW. J Food Prot; 2013 Aug 01; 76(8):1384-92. PubMed ID: 23905794 [Abstract] [Full Text] [Related]
14. The germinability of spores of a psychrotolerant, non-proteolytic strain of Clostridium botulinum is influenced by their formation and storage temperature. Evans RI, Russell NJ, Gould GW, McClure PJ. J Appl Microbiol; 1997 Sep 01; 83(3):273-80. PubMed ID: 9351207 [Abstract] [Full Text] [Related]
16. Change of thermal inactivation of Clostridium botulinum spores during rice cooking. Konagaya Y, Urakami H, Hoshino J, Kobayashi A, Sasagawa A, Yamazaki A, Kozaki S, Tanaka N. J Food Prot; 2009 Nov 01; 72(11):2400-6. PubMed ID: 19903408 [Abstract] [Full Text] [Related]
17. Prevalence of Clostridium species and behaviour of Clostridium botulinum in gnocchi, a REPFED of italian origin. Del Torre M, Stecchini ML, Braconnier A, Peck MW. Int J Food Microbiol; 2004 Nov 01; 96(2):115-31. PubMed ID: 15364467 [Abstract] [Full Text] [Related]
19. Predictive model of the effect of temperature, pH and sodium chloride on growth from spores of non-proteolytic Clostridium botulinum. Graham AF, Mason DR, Peck MW. Int J Food Microbiol; 1996 Aug 01; 31(1-3):69-85. PubMed ID: 8880298 [Abstract] [Full Text] [Related]