These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Coexpression of glucose transporters and glucokinase in Xenopus oocytes indicates that both glucose transport and phosphorylation determine glucose utilization. Morita H, Yano Y, Niswender KD, May JM, Whitesell RR, Wu L, Printz RL, Granner DK, Magnuson MA, Powers AC. J Clin Invest; 1994 Oct; 94(4):1373-82. PubMed ID: 7929812 [Abstract] [Full Text] [Related]
5. Differential targeting of glucose transporter isoforms heterologously expressed in Xenopus oocytes. Thomas HM, Takeda J, Gould GW. Biochem J; 1993 Mar 15; 290 ( Pt 3)(Pt 3):707-15. PubMed ID: 8457198 [Abstract] [Full Text] [Related]
6. Structural domains that contribute to substrate specificity in facilitated glucose transporters are distinct from those involved in kinetic function: studies with GLUT-1/GLUT-2 chimeras. Noel LE, Newgard CB. Biochemistry; 1997 May 06; 36(18):5465-75. PubMed ID: 9154929 [Abstract] [Full Text] [Related]
11. C-terminal mutations that alter the turnover number for 3-O-methylglucose transport by GLUT1 and GLUT4. Dauterive R, Laroux S, Bunn RC, Chaisson A, Sanson T, Reed BC. J Biol Chem; 1996 May 10; 271(19):11414-21. PubMed ID: 8626697 [Abstract] [Full Text] [Related]
12. Isolation of cDNAs and tissue specific expression of ovine glucose transporters. Bennett BL, Prosser CG, Grigor MR. Biochem Mol Biol Int; 1995 Sep 10; 37(1):9-16. PubMed ID: 8653093 [Abstract] [Full Text] [Related]
13. Evidence that facilitative glucose transporters may fold as beta-barrels. Fischbarg J, Cheung M, Czegledy F, Li J, Iserovich P, Kuang K, Hubbard J, Garner M, Rosen OM, Golde DW. Proc Natl Acad Sci U S A; 1993 Dec 15; 90(24):11658-62. PubMed ID: 8265604 [Abstract] [Full Text] [Related]
14. GLUT-4 NH2 terminus contains a phenylalanine-based targeting motif that regulates intracellular sequestration. Piper RC, Tai C, Kulesza P, Pang S, Warnock D, Baenziger J, Slot JW, Geuze HJ, Puri C, James DE. J Cell Biol; 1993 Jun 15; 121(6):1221-32. PubMed ID: 8509445 [Abstract] [Full Text] [Related]
15. Characterization of GLUT5 domains responsible for fructose transport. Buchs AE, Sasson S, Joost HG, Cerasi E. Endocrinology; 1998 Mar 15; 139(3):827-31. PubMed ID: 9492009 [Abstract] [Full Text] [Related]
16. Glucose transporter GLUT12-functional characterization in Xenopus laevis oocytes. Rogers S, Chandler JD, Clarke AL, Petrou S, Best JD. Biochem Biophys Res Commun; 2003 Aug 29; 308(3):422-6. PubMed ID: 12914765 [Abstract] [Full Text] [Related]
18. Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Gould GW, Thomas HM, Jess TJ, Bell GI. Biochemistry; 1991 May 28; 30(21):5139-45. PubMed ID: 2036379 [Abstract] [Full Text] [Related]
19. The efficient intracellular sequestration of the insulin-regulatable glucose transporter (GLUT-4) is conferred by the NH2 terminus. Piper RC, Tai C, Slot JW, Hahn CS, Rice CM, Huang H, James DE. J Cell Biol; 1992 May 28; 117(4):729-43. PubMed ID: 1577853 [Abstract] [Full Text] [Related]
20. Structure-function studies of the brain-type glucose transporter, GLUT3: alanine-scanning mutagenesis of putative transmembrane helix VIII and an investigation of the role of proline residues in transport catalysis. Seatter MJ, Kane S, Porter LM, Arbuckle MI, Melvin DR, Gould GW. Biochemistry; 1997 May 27; 36(21):6401-7. PubMed ID: 9174356 [Abstract] [Full Text] [Related] Page: [Next] [New Search]