These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 7671213

  • 1. Immunocytochemical localization of histone H4 in the chromatoid body of rat spermatids.
    Werner G, Werner K.
    J Submicrosc Cytol Pathol; 1995 Jul; 27(3):325-30. PubMed ID: 7671213
    [Abstract] [Full Text] [Related]

  • 2. Immunoelectron microscopic study of BASP1 and MARCKS location in the early and late rat spermatids.
    Mosevitsky MI, Snigirevskaya ES, Komissarchik YY.
    Acta Histochem; 2012 May; 114(3):237-43. PubMed ID: 21764106
    [Abstract] [Full Text] [Related]

  • 3. Changes in distribution of basic nuclear proteins and chromatin organization during spermiogenesis in the greater bandicoot rat, Bandicota indica.
    Worawittayawong P, Leigh C, Weerachatyanukul W, Manochantr S, Sobhon P, Breed WG, Sretarugsa P.
    Cell Tissue Res; 2008 Oct; 334(1):135-44. PubMed ID: 18726120
    [Abstract] [Full Text] [Related]

  • 4. Formation of chromatoid body during rat spermatogenesis.
    Söderström KO.
    Z Mikrosk Anat Forsch; 1978 Oct; 92(3):417-30. PubMed ID: 751333
    [Abstract] [Full Text] [Related]

  • 5. Spermiogenic nuclear protein transitions and chromatin condensation. Proposal for an ancestral model of nuclear spermiogenesis.
    Kurtz K, Saperas N, Ausió J, Chiva M.
    J Exp Zool B Mol Dev Evol; 2009 May 15; 312B(3):149-63. PubMed ID: 19132734
    [Abstract] [Full Text] [Related]

  • 6. Immunoelectron microscopical distribution of histones H2B and H3 and protamines in the course of mouse spermiogenesis.
    Biggiogera M, Muller S, Courtens JL, Fakan S, Romanini MG.
    Microsc Res Tech; 1992 Feb 01; 20(3):259-67. PubMed ID: 1543879
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Possible function of caudal nuclear pocket: degradation of nucleoproteins by ubiquitin-proteasome system in rat spermatids and human sperm.
    Haraguchi CM, Mabuchi T, Hirata S, Shoda T, Tokumoto T, Hoshi K, Yokota S.
    J Histochem Cytochem; 2007 Jun 01; 55(6):585-95. PubMed ID: 17312012
    [Abstract] [Full Text] [Related]

  • 9. Immunohistochemical distribution of hyperacetylated histone H4 in testis of paddlefish Polyodon spathula: ultrastructural correlation with chromatin condensation.
    Zarnescu O.
    Cell Tissue Res; 2007 May 01; 328(2):401-10. PubMed ID: 17252243
    [Abstract] [Full Text] [Related]

  • 10. Immunocytochemical localization of proteins utilized in the formation of outer dense fibers and fibrous sheath in rat spermatids: an electron microscope study.
    Clermont Y, Oko R, Hermo L.
    Anat Rec; 1990 Aug 01; 227(4):447-57. PubMed ID: 2393097
    [Abstract] [Full Text] [Related]

  • 11. Stage-specific expression of rat transition protein 2 mRNA and possible localization to the chromatoid body of step 7 spermatids by in situ hybridization using a nonradioactive riboprobe.
    Saunders PT, Millar MR, Maguire SM, Sharpe RM.
    Mol Reprod Dev; 1992 Dec 01; 33(4):385-91. PubMed ID: 1472370
    [Abstract] [Full Text] [Related]

  • 12. Chromatin reorganization in rat spermatids during the disappearance of testis-specific histone, H1t, and the appearance of transition proteins TP1 and TP2.
    Oko RJ, Jando V, Wagner CL, Kistler WS, Hermo LS.
    Biol Reprod; 1996 May 01; 54(5):1141-57. PubMed ID: 8722637
    [Abstract] [Full Text] [Related]

  • 13. Novel aspect of perinuclear theca assembly revealed by immunolocalization of non-nuclear somatic histones during bovine spermiogenesis.
    Tovich PR, Sutovsky P, Oko RJ.
    Biol Reprod; 2004 Oct 01; 71(4):1182-94. PubMed ID: 15189827
    [Abstract] [Full Text] [Related]

  • 14. Active movements of the chromatoid body. A possible transport mechanism for haploid gene products.
    Parvinen M, Parvinen LM.
    J Cell Biol; 1979 Mar 01; 80(3):621-8. PubMed ID: 457761
    [Abstract] [Full Text] [Related]

  • 15. Increased accessibility of the N-terminus of testis-specific histone TH2B to antibodies in elongating spermatids.
    Unni E, Mayerhofer A, Zhang Y, Bhatnagar YM, Russell LD, Meistrich ML.
    Mol Reprod Dev; 1995 Oct 01; 42(2):210-9. PubMed ID: 8562066
    [Abstract] [Full Text] [Related]

  • 16. Nuclear protein transitions in cuttle-fish spermiogenesis: immunocytochemical localization of a protein specific for the spermatid stage.
    Rousseaux-Prévost R, Engelhardt RP, Rousseaux J, Wouters-Tyrou D, Sautière P.
    Gamete Res; 1988 Mar 01; 19(3):277-90. PubMed ID: 3058565
    [Abstract] [Full Text] [Related]

  • 17. Highly acetylated H4 is associated with histone displacement in rat spermatids.
    Meistrich ML, Trostle-Weige PK, Lin R, Bhatnagar YM, Allis CD.
    Mol Reprod Dev; 1992 Mar 01; 31(3):170-81. PubMed ID: 1372808
    [Abstract] [Full Text] [Related]

  • 18. Immunocytochemical and immunogold analyses of histone H4 acetylation during Chara vulgaris spermiogenesis.
    Wojtczak A.
    Micron; 2016 Mar 01; 82():86-93. PubMed ID: 26774747
    [Abstract] [Full Text] [Related]

  • 19. Further study of the chromatoid body in rat spermatocytes and spermatids.
    Andonov M.
    Z Mikrosk Anat Forsch; 1990 Mar 01; 104(1):46-54. PubMed ID: 2349824
    [Abstract] [Full Text] [Related]

  • 20. Electron microscopy analysis of histone acetylation and DNA strand breaks in mouse elongating spermatids using a dual labelling approach.
    Bikond Nkoma G, Leduc F, Jaouad L, Boissonneault G.
    Andrologia; 2010 Oct 01; 42(5):322-5. PubMed ID: 20860633
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.