These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


658 related items for PubMed ID: 7685861

  • 1. Development of immunoreactivity for calcitonin gene-related peptide, substance P and glutamate in primary sensory neurons, and for serotonin in the spinal cord of fetal sheep.
    Nitsos I, Rees S.
    Neuroscience; 1993 May; 54(1):239-52. PubMed ID: 7685861
    [Abstract] [Full Text] [Related]

  • 2. Ultrastructural studies on peptides in the dorsal horn of the spinal cord--I. Co-existence of galanin with other peptides in primary afferents in normal rats.
    Zhang X, Nicholas AP, Hökfelt T.
    Neuroscience; 1993 Nov; 57(2):365-84. PubMed ID: 7509467
    [Abstract] [Full Text] [Related]

  • 3. Ultrastructural visualization of glutamate and aspartate immunoreactivities in the rat dorsal horn, with special reference to the co-localization of glutamate, substance P and calcitonin-gene related peptide.
    Merighi A, Polak JM, Theodosis DT.
    Neuroscience; 1991 Nov; 40(1):67-80. PubMed ID: 1711177
    [Abstract] [Full Text] [Related]

  • 4. Vasoactive intestinal polypeptide and substance P in primary afferent pathways to the sacral spinal cord of the cat.
    Kawatani M, Erdman SL, de Groat WC.
    J Comp Neurol; 1985 Nov 15; 241(3):327-47. PubMed ID: 2418069
    [Abstract] [Full Text] [Related]

  • 5. Distribution of 125I-galanin binding sites, immunoreactive galanin, and its coexistence with 5-hydroxytryptamine in the cat spinal cord: biochemical, histochemical, and experimental studies at the light and electron microscopic level.
    Arvidsson U, Ulfhake B, Cullheim S, Bergstrand A, Theodorson E, Hökfelt T.
    J Comp Neurol; 1991 Jun 01; 308(1):115-38. PubMed ID: 1714921
    [Abstract] [Full Text] [Related]

  • 6. The development of cutaneous afferent pathways in fetal sheep: a structural and functional study.
    Rees S, Nitsos I, Rawson J.
    Brain Res; 1994 Oct 24; 661(1-2):207-22. PubMed ID: 7834372
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. The immunocytochemical distribution of seven peptides in the spinal cord and dorsal root ganglia of horse and pig.
    Merighi A, Kar S, Gibson SJ, Ghidella S, Gobetto A, Peirone SM, Polak JM.
    Anat Embryol (Berl); 1990 Oct 24; 181(3):271-80. PubMed ID: 1692451
    [Abstract] [Full Text] [Related]

  • 9. Corticotropin releasing factor-like immunoreactivity in afferent projections to the sacral spinal cord of the cat.
    Kawatani M, Suzuki T, de Groat WC.
    J Auton Nerv Syst; 1996 Dec 14; 61(3):218-26. PubMed ID: 8988478
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Calcium-binding proteins, parvalbumin- and calbindin-D 28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: a light and electron microscopic study.
    Antal M, Freund TF, Polgár E.
    J Comp Neurol; 1990 May 15; 295(3):467-84. PubMed ID: 2351764
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Ontogeny of peptide- and amine-containing neurones in motor, sensory, and autonomic regions of rat and human spinal cord, dorsal root ganglia, and rat skin.
    Marti E, Gibson SJ, Polak JM, Facer P, Springall DR, Van Aswegen G, Aitchison M, Koltzenburg M.
    J Comp Neurol; 1987 Dec 15; 266(3):332-59. PubMed ID: 2447134
    [Abstract] [Full Text] [Related]

  • 14. Developmental pattern and distribution of nerve growth factor low-affinity receptor immunoreactivity in human spinal cord and dorsal root ganglia: comparison with synaptophysin, neurofilament and neuropeptide immunoreactivities.
    Suburo AM, Gu XH, Moscoso G, Ross A, Terenghi G, Polak JM.
    Neuroscience; 1992 Sep 15; 50(2):467-82. PubMed ID: 1436499
    [Abstract] [Full Text] [Related]

  • 15. Visceral and somatic afferent origin of calcitonin gene-related peptide immunoreactivity in the lower thoracic spinal cord of the rat.
    Sharkey KA, Sobrino JA, Cervero F, Varro A, Dockray GJ.
    Neuroscience; 1989 Sep 15; 32(1):169-79. PubMed ID: 2586748
    [Abstract] [Full Text] [Related]

  • 16. The ontogeny of [125I]rat-alpha-CGRP binding sites in the spinal cord of sheep: a prenatal and postnatal study.
    Nitsos I, Sexton PM, Rees S.
    Neuroscience; 1994 Sep 15; 62(1):257-64. PubMed ID: 7816203
    [Abstract] [Full Text] [Related]

  • 17. Expression of eight neuropeptides in intraocular spinal cord grafts: organotypical and disturbed patterns as evidenced by immunohistochemistry.
    Henschen A, Hökfelt T, Elde R, Fahrenkrug J, Frey P, Terenius L, Olson L.
    Neuroscience; 1988 Jul 15; 26(1):193-213. PubMed ID: 2458542
    [Abstract] [Full Text] [Related]

  • 18. Analysis of calcitonin gene-related peptide-like immunoreactivity in the cat dorsal spinal cord and dorsal root ganglia provide evidence for a multisegmental projection of nociceptive C-fiber primary afferents.
    Traub RJ, Allen B, Humphrey E, Ruda MA.
    J Comp Neurol; 1990 Dec 15; 302(3):562-74. PubMed ID: 1702117
    [Abstract] [Full Text] [Related]

  • 19. Enrichment of glutamate-like immunoreactivity in primary afferent terminals throughout the spinal cord dorsal horn.
    Broman J, Anderson S, Ottersen OP.
    Eur J Neurosci; 1993 Aug 01; 5(8):1050-61. PubMed ID: 7904222
    [Abstract] [Full Text] [Related]

  • 20. Calcitonin gene-related peptide increase in the rat spinal dorsal horn and dorsal column nucleus following peripheral nerve injury: up-regulation in a subpopulation of primary afferent sensory neurons.
    Miki K, Fukuoka T, Tokunaga A, Noguchi K.
    Neuroscience; 1998 Feb 01; 82(4):1243-52. PubMed ID: 9466443
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.