These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


116 related items for PubMed ID: 7687826

  • 1. 5'-Adenylylimidodiphosphate does not activate CFTR chloride channels in cell-free patches of membrane.
    Carson MR, Welsh MJ.
    Am J Physiol; 1993 Jul; 265(1 Pt 1):L27-32. PubMed ID: 7687826
    [Abstract] [Full Text] [Related]

  • 2. Regulation of the gating of cystic fibrosis transmembrane conductance regulator C1 channels by phosphorylation and ATP hydrolysis.
    Hwang TC, Nagel G, Nairn AC, Gadsby DC.
    Proc Natl Acad Sci U S A; 1994 May 24; 91(11):4698-702. PubMed ID: 7515176
    [Abstract] [Full Text] [Related]

  • 3. Hydrolytic and nonhydrolytic interactions in the ATP regulation of CFTR Cl- conductance.
    Reddy MM, Quinton PM.
    Am J Physiol; 1996 Jul 24; 271(1 Pt 1):C35-42. PubMed ID: 8760028
    [Abstract] [Full Text] [Related]

  • 4. Dual effects of ADP and adenylylimidodiphosphate on CFTR channel kinetics show binding to two different nucleotide binding sites.
    Weinreich F, Riordan JR, Nagel G.
    J Gen Physiol; 1999 Jul 24; 114(1):55-70. PubMed ID: 10398692
    [Abstract] [Full Text] [Related]

  • 5. Comparison of the gating behaviour of human and murine cystic fibrosis transmembrane conductance regulator Cl- channels expressed in mammalian cells.
    Lansdell KA, Delaney SJ, Lunn DP, Thomson SA, Sheppard DN, Wainwright BJ.
    J Physiol; 1998 Apr 15; 508 ( Pt 2)(Pt 2):379-92. PubMed ID: 9508803
    [Abstract] [Full Text] [Related]

  • 6. Effect of ATP concentration on CFTR Cl- channels: a kinetic analysis of channel regulation.
    Winter MC, Sheppard DN, Carson MR, Welsh MJ.
    Biophys J; 1994 May 15; 66(5):1398-403. PubMed ID: 7520292
    [Abstract] [Full Text] [Related]

  • 7. Converting nonhydrolyzable nucleotides to strong cystic fibrosis transmembrane conductance regulator (CFTR) agonists by gain of function (GOF) mutations.
    Okeyo G, Wang W, Wei S, Kirk KL.
    J Biol Chem; 2013 Jun 14; 288(24):17122-33. PubMed ID: 23620589
    [Abstract] [Full Text] [Related]

  • 8. The CFTR chloride channel: nucleotide interactions and temperature-dependent gating.
    Mathews CJ, Tabcharani JA, Hanrahan JW.
    J Membr Biol; 1998 May 01; 163(1):55-66. PubMed ID: 9569250
    [Abstract] [Full Text] [Related]

  • 9. Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by specific protein kinases and protein phosphatases.
    Berger HA, Travis SM, Welsh MJ.
    J Biol Chem; 1993 Jan 25; 268(3):2037-47. PubMed ID: 7678414
    [Abstract] [Full Text] [Related]

  • 10. Interaction of nucleotides with membrane-associated cystic fibrosis transmembrane conductance regulator.
    Travis SM, Carson MR, Ries DR, Welsh MJ.
    J Biol Chem; 1993 Jul 25; 268(21):15336-9. PubMed ID: 7687995
    [Abstract] [Full Text] [Related]

  • 11. Pyridine nucleotide redox potential modulates cystic fibrosis transmembrane conductance regulator Cl- conductance.
    Stutts MJ, Gabriel SE, Price EM, Sarkadi B, Olsen JC, Boucher RC.
    J Biol Chem; 1994 Mar 25; 269(12):8667-74. PubMed ID: 7510695
    [Abstract] [Full Text] [Related]

  • 12. ATP hydrolysis cycles and the gating of CFTR Cl- channels.
    Gadsby DC, Dousmanis AG, Nairn AC.
    Acta Physiol Scand Suppl; 1998 Aug 25; 643():247-56. PubMed ID: 9789567
    [Abstract] [Full Text] [Related]

  • 13. Pyrophosphate stimulates wild-type and mutant cystic fibrosis transmembrane conductance regulator Cl- channels.
    Carson MR, Winter MC, Travis SM, Welsh MJ.
    J Biol Chem; 1995 Sep 01; 270(35):20466-72. PubMed ID: 7544788
    [Abstract] [Full Text] [Related]

  • 14. Phosphate stimulates CFTR Cl- channels.
    Carson MR, Travis SM, Winter MC, Sheppard DN, Welsh MJ.
    Biophys J; 1994 Nov 01; 67(5):1867-75. PubMed ID: 7532021
    [Abstract] [Full Text] [Related]

  • 15. Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel.
    Berger HA, Anderson MP, Gregory RJ, Thompson S, Howard PW, Maurer RA, Mulligan R, Smith AE, Welsh MJ.
    J Clin Invest; 1991 Oct 01; 88(4):1422-31. PubMed ID: 1717515
    [Abstract] [Full Text] [Related]

  • 16. Regulation of the cystic fibrosis transmembrane conductance regulator chloride channel by MgATP.
    Welsh MJ, Anderson MP.
    Soc Gen Physiol Ser; 1993 Oct 01; 48():119-27. PubMed ID: 7684867
    [Abstract] [Full Text] [Related]

  • 17. Regulation of CFTR Cl- channel gating by ADP and ATP analogues.
    Schultz BD, Venglarik CJ, Bridges RJ, Frizzell RA.
    J Gen Physiol; 1995 Mar 01; 105(3):329-61. PubMed ID: 7539480
    [Abstract] [Full Text] [Related]

  • 18. External ATP and its analogs activate the cystic fibrosis transmembrane conductance regulator by a cyclic AMP-independent mechanism.
    Cantiello HF, Prat AG, Reisin IL, Ercole LB, Abraham EH, Amara JF, Gregory RJ, Ausiello DA.
    J Biol Chem; 1994 Apr 15; 269(15):11224-32. PubMed ID: 7512560
    [Abstract] [Full Text] [Related]

  • 19. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M, Dong K, Egan ME, Giebisch GH, Boulpaep EL, Hebert SC.
    Proc Natl Acad Sci U S A; 2010 Mar 30; 107(13):6082-7. PubMed ID: 20231442
    [Abstract] [Full Text] [Related]

  • 20. CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates.
    Sugita M, Yue Y, Foskett JK.
    EMBO J; 1998 Feb 16; 17(4):898-908. PubMed ID: 9463368
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.