These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 7688538

  • 1. Effect of polyaspartic acid on CdCl2-induced nephrotoxicity in the rat.
    Shibasaki T, Nakano H, Ohno I, Ishimoto F, Sakai O.
    Biol Trace Elem Res; 1993; 37(2-3):261-7. PubMed ID: 7688538
    [Abstract] [Full Text] [Related]

  • 2. Effect of pentoxifylline on CdCl2-induced nephrotoxicity in the rat.
    Shibasaki T, Nakano H, Ohno I, Ishimoto F, Sakai O.
    Biol Trace Elem Res; 1994 Jun; 41(3):245-51. PubMed ID: 7946916
    [Abstract] [Full Text] [Related]

  • 3. Characteristics of cadmium-induced nephrotoxicity in Syrian hamsters.
    Shibasaki T, Ohno I, Ishimoto F, Sakai O.
    Nihon Jinzo Gakkai Shi; 1993 Aug; 35(8):913-7. PubMed ID: 8255000
    [Abstract] [Full Text] [Related]

  • 4. Discrepancy between the nephrotoxic potencies of cadmium-metallothionein and cadmium chloride and the renal concentration of cadmium in the proximal convoluted tubules.
    Dorian C, Gattone VH, Klaassen CD.
    Toxicol Appl Pharmacol; 1995 Jan; 130(1):161-8. PubMed ID: 7839364
    [Abstract] [Full Text] [Related]

  • 5. Nephrotoxicity of CdCl2 and Cd-metallothionein in cultured rat kidney proximal tubules and LLC-PK1 cells.
    Liu J, Liu Y, Klaassen CD.
    Toxicol Appl Pharmacol; 1994 Oct; 128(2):264-70. PubMed ID: 7940541
    [Abstract] [Full Text] [Related]

  • 6. Changes in the structure and function of the kidney of rats chronically exposed to cadmium. I. Biochemical and histopathological studies.
    Brzóska MM, Kamiński M, Supernak-Bobko D, Zwierz K, Moniuszko-Jakoniuk J.
    Arch Toxicol; 2003 Jun; 77(6):344-52. PubMed ID: 12799774
    [Abstract] [Full Text] [Related]

  • 7. Acute CdMT injection is not a good model to study chronic Cd nephropathy: comparison of chronic CdCl2 and CdMT exposure with acute CdMT injection in rats.
    Liu J, Habeebu SS, Liu Y, Klaassen CD.
    Toxicol Appl Pharmacol; 1998 Nov; 153(1):48-58. PubMed ID: 9875299
    [Abstract] [Full Text] [Related]

  • 8. Urinary enzymes as biomarkers of renal injury in experimental nephrotoxicity of immunosuppressive drugs.
    Burdmann EA, Andoh TF, Lindsley J, Russell J, Bennett WM, Porter G.
    Ren Fail; 1994 Nov; 16(1):161-8. PubMed ID: 7514309
    [Abstract] [Full Text] [Related]

  • 9. Transport of inorganic phosphate in renal cortical brush-border membrane vesicles of cadmium-intoxicated rats.
    Ahn DW, Park YS.
    Toxicol Appl Pharmacol; 1995 Aug; 133(2):239-43. PubMed ID: 7645019
    [Abstract] [Full Text] [Related]

  • 10. Clinical significance of urinary N-acetyl-beta-D-glucosaminidase and alanine aminopeptidase.
    Hsu WS, Kao JT, Chen JS.
    Taiwan Yi Xue Hui Za Zhi; 1989 Apr; 88(4):407-9. PubMed ID: 2571671
    [Abstract] [Full Text] [Related]

  • 11. Comparative investigations on the effects of acute intraperitoneal cadmium, chromium, and mercury exposure on the kidney.
    Bomhard E, Maruhn D, Vogel O.
    Uremia Invest; 1989 Apr; 9(2):131-6. PubMed ID: 2876541
    [Abstract] [Full Text] [Related]

  • 12. Changes in urinary proximal tubule parameters in neonatal rats exposed to cadmium chloride during pregnancy.
    Saillenfait AM, Payan JP, Brondeau MT, Zissu D, de Ceaurriz J.
    J Appl Toxicol; 1991 Feb; 11(1):23-7. PubMed ID: 1673694
    [Abstract] [Full Text] [Related]

  • 13. Polyaspartic acid protects against gentamicin nephrotoxicity in the rat.
    Ramsammy LS, Josepovitz C, Lane BP, Kaloyanides GJ.
    J Pharmacol Exp Ther; 1989 Jul; 250(1):149-53. PubMed ID: 2746494
    [Abstract] [Full Text] [Related]

  • 14. Cisplatin nephrotoxicity and protection by silibinin.
    Gaedeke J, Fels LM, Bokemeyer C, Mengs U, Stolte H, Lentzen H.
    Nephrol Dial Transplant; 1996 Jan; 11(1):55-62. PubMed ID: 8649653
    [Abstract] [Full Text] [Related]

  • 15. [Neonatal hypoxic-ischemic nephropathy and urinary diagnostic indices: the utility of measuring tubular enzymes (NAG and AAP)].
    Bertotti A, De Marchi S, Brovedani P, Gaeta G, Peratoner L, Mangiarotti MA.
    Pediatr Med Chir; 1990 Jan; 12(4):347-9. PubMed ID: 1981610
    [Abstract] [Full Text] [Related]

  • 16. Mechanism of nephrotoxicity induced by repeated administration of cadmium chloride in rats.
    Sudo J, Hayashi T, Kimura S, Kakuno K, Terui J, Takashima K, Soyama M.
    J Toxicol Environ Health; 1996 Jul; 48(4):333-48. PubMed ID: 8691505
    [Abstract] [Full Text] [Related]

  • 17. X-ray microanalysis of renal proximal tubules in cadmium-treated rats.
    Marshall AT, Schroen C, Condron RJ.
    J Submicrosc Cytol Pathol; 1994 Jan; 26(1):59-66. PubMed ID: 8149333
    [Abstract] [Full Text] [Related]

  • 18. The relationship between enzymuria and kidney enzyme activities in experimental gentamicin nephrotoxicity.
    Whiting PH, Brown PA.
    Ren Fail; 1996 Nov; 18(6):899-909. PubMed ID: 8948524
    [Abstract] [Full Text] [Related]

  • 19. N-acetyl-beta-D-glucosaminidase (NAG) and alanine aminopeptidase (AAP) excretion after acute administration of acetaminophen, salsalate and aspirin in rats.
    Casadevall G, Moreno JJ, Franch MA, Queralt J.
    Res Commun Chem Pathol Pharmacol; 1993 Jul; 81(1):77-89. PubMed ID: 8105522
    [Abstract] [Full Text] [Related]

  • 20. Cadmium transport and toxicity in isolated perfused segments of the renal proximal tubule.
    Robinson MK, Barfuss DW, Zalups RK.
    Toxicol Appl Pharmacol; 1993 Jul; 121(1):103-11. PubMed ID: 8337694
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.