These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


134 related items for PubMed ID: 7689412

  • 1. The maximum rate of neurofilament transport in axons: a view of molecular transport mechanisms continuously engaged.
    Lasek RJ, Paggi P, Katz MJ.
    Brain Res; 1993 Jul 09; 616(1-2):58-64. PubMed ID: 7689412
    [Abstract] [Full Text] [Related]

  • 2. Slow axonal transport mechanisms move neurofilaments relentlessly in mouse optic axons.
    Lasek RJ, Paggi P, Katz MJ.
    J Cell Biol; 1992 May 09; 117(3):607-16. PubMed ID: 1374068
    [Abstract] [Full Text] [Related]

  • 3. [32P]orthophosphate and [35S]methionine label separate pools of neurofilaments with markedly different axonal transport kinetics in mouse retinal ganglion cells in vivo.
    Nixon RA, Lewis SE, Mercken M, Sihag RK.
    Neurochem Res; 1994 Nov 09; 19(11):1445-53. PubMed ID: 7534878
    [Abstract] [Full Text] [Related]

  • 4. C-terminal phosphorylation of the high molecular weight neurofilament subunit correlates with decreased neurofilament axonal transport velocity.
    Jung C, Yabe JT, Shea TB.
    Brain Res; 2000 Feb 21; 856(1-2):12-9. PubMed ID: 10677606
    [Abstract] [Full Text] [Related]

  • 5. Axonal transport of neurofilaments: a single population of intermittently moving polymers.
    Li Y, Jung P, Brown A.
    J Neurosci; 2012 Jan 11; 32(2):746-58. PubMed ID: 22238110
    [Abstract] [Full Text] [Related]

  • 6. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber.
    Nixon RA, Paskevich PA, Sihag RK, Thayer CY.
    J Cell Biol; 1994 Aug 11; 126(4):1031-46. PubMed ID: 7519617
    [Abstract] [Full Text] [Related]

  • 7. Neurofilament subunits undergo more rapid translocation within retinas than in optic axons.
    Jung C, Shea TB.
    Brain Res Mol Brain Res; 2004 Mar 30; 122(2):188-92. PubMed ID: 15010211
    [Abstract] [Full Text] [Related]

  • 8. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments.
    Lewis SE, Nixon RA.
    J Cell Biol; 1988 Dec 30; 107(6 Pt 2):2689-701. PubMed ID: 3144556
    [Abstract] [Full Text] [Related]

  • 9. Early posttranslational modifications of the three neurofilament subunits in mouse retinal ganglion cells: neuronal sites and time course in relation to subunit polymerization and axonal transport.
    Nixon RA, Lewis SE, Dahl D, Marotta CA, Drager UC.
    Brain Res Mol Brain Res; 1989 Mar 30; 5(2):93-108. PubMed ID: 2469928
    [Abstract] [Full Text] [Related]

  • 10. Regulation of neurofilament axonal transport by phosphorylation in optic axons in situ.
    Jung C, Shea TB.
    Cell Motil Cytoskeleton; 1999 Mar 30; 42(3):230-40. PubMed ID: 10098936
    [Abstract] [Full Text] [Related]

  • 11. The high and middle molecular weight neurofilament subunits regulate the association of neurofilaments with kinesin: inhibition by phosphorylation of the high molecular weight subunit.
    Jung C, Lee S, Ortiz D, Zhu Q, Julien JP, Shea TB.
    Brain Res Mol Brain Res; 2005 Nov 30; 141(2):151-5. PubMed ID: 16246456
    [Abstract] [Full Text] [Related]

  • 12. Differential turnover of tubulin and neurofilament proteins in central nervous system neuron terminals.
    Garner JA.
    Brain Res; 1988 Aug 23; 458(2):309-18. PubMed ID: 2463048
    [Abstract] [Full Text] [Related]

  • 13. Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density.
    Rao MV, Engle LJ, Mohan PS, Yuan A, Qiu D, Cataldo A, Hassinger L, Jacobsen S, Lee VM, Andreadis A, Julien JP, Bridgman PC, Nixon RA.
    J Cell Biol; 2002 Oct 28; 159(2):279-90. PubMed ID: 12403814
    [Abstract] [Full Text] [Related]

  • 14. Diversity in the axonal transport of structural proteins: major differences between optic and spinal axons in the rat.
    McQuarrie IG, Brady ST, Lasek RJ.
    J Neurosci; 1986 Jun 28; 6(6):1593-605. PubMed ID: 2423662
    [Abstract] [Full Text] [Related]

  • 15. Deleting the phosphorylated tail domain of the neurofilament heavy subunit does not alter neurofilament transport rate in vivo.
    Yuan A, Nixon RA, Rao MV.
    Neurosci Lett; 2006 Jan 30; 393(2-3):264-8. PubMed ID: 16266786
    [Abstract] [Full Text] [Related]

  • 16. Three subpopulations of fast axonally transported retinal ganglion cell proteins are differentially trafficked in the rat optic pathway.
    Mulugeta S, Ciavarra RP, Maney RK, Tedeschi B.
    J Neurosci Res; 2000 Jan 15; 59(2):247-58. PubMed ID: 10650883
    [Abstract] [Full Text] [Related]

  • 17. Slowing of neurofilament transport and the radial growth of developing nerve fibers.
    Hoffman PN, Griffin JW, Gold BG, Price DL.
    J Neurosci; 1985 Nov 15; 5(11):2920-9. PubMed ID: 2414416
    [Abstract] [Full Text] [Related]

  • 18. A possible mechanism for neurofilament slowing down in myelinated axon: Phosphorylation-induced variation of NF kinetics.
    Jia Z, Li Y.
    PLoS One; 2021 Nov 15; 16(3):e0247656. PubMed ID: 33711034
    [Abstract] [Full Text] [Related]

  • 19. Axo-glial interactions at the dorsal root transitional zone regulate neurofilament protein synthesis in axotomized sensory neurons.
    Liuzzi FJ, Tedeschi B.
    J Neurosci; 1992 Dec 15; 12(12):4783-92. PubMed ID: 1464767
    [Abstract] [Full Text] [Related]

  • 20. The return of phosphorylated and nonphosphorylated epitopes of neurofilament proteins to the regenerating optic nerve of Xenopus laevis.
    Zhao Y, Szaro BG.
    J Comp Neurol; 1994 May 01; 343(1):158-72. PubMed ID: 7517961
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.