These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. [Evaluation of the changes in the bone structures of the human axial skeleton in prolonged space flight]. Stupakov GP, Kazeĭkin VS, Kozlovskiĭ AP, Korolev VV. Kosm Biol Aviakosm Med; 1984; 18(2):33-7. PubMed ID: 6716940 [Abstract] [Full Text] [Related]
6. [The characteristics of osteoclast localization in the bones of the extremities of the crested salamander Pleurodeles waltlii]. Berezovskaia OP. Tsitol Genet; 1999; 33(2):11-7. PubMed ID: 10465835 [Abstract] [Full Text] [Related]
9. [Comparative analysis of cosmonauts skeleton changes after space flights on orbital station Mir and international space station and possibilities of prognosis for interplanetary missions]. Oganov VS, Bogomolov VV, Bakulin AV, Novikov VE, Kabitskaia OE, Murashko LM, Morgun VV, Kasparskiĭ RR. Fiziol Cheloveka; 2010; 36(3):39-47. PubMed ID: 20586301 [Abstract] [Full Text] [Related]
11. Physiological mechanisms of adaptation to weightlessness. Data from experiments with animals in earth-orbit biosatellites. Gazenko OG, Genin AM, Il'in EA, Serova LV, Tigranyan RA, Oganov VS. Biol Bull Acad Sci USSR; 1980; 7(1):1-12. PubMed ID: 7002224 [Abstract] [Full Text] [Related]
12. Changes in the numbers of osteoclasts in newts under conditions of microgravity. Berezovska OP, Rodionova NV, Grigoryan EN, Mitashov VI. Adv Space Res; 1998; 21(8-9):1059-63. PubMed ID: 11541351 [Abstract] [Full Text] [Related]
14. Stress under normal conditions, hypokinesia simulating weightlessness, and during flights in space. Grigor'ev AI, Fedorov BM. Hum Physiol; 1996; 22(2):139-47. PubMed ID: 11541518 [Abstract] [Full Text] [Related]
15. [Man in the condition of weightlessness (author's transl)]. Fuchs HS. MMW Munch Med Wochenschr; 1981 Jan 30; 123(5):159-64. PubMed ID: 6780889 [Abstract] [Full Text] [Related]
16. [Effect of the combined exposure to ionizing radiation and weightlessness on the calcium and phosphorus content in the mineral fraction of rat calcified skeletal tissues]. Prokhonchukov AA, Komissarova NA, Kolesnik AG, Novikov LL. Radiobiologiia; 1979 Jan 30; 19(5):760-2. PubMed ID: 515371 [No Abstract] [Full Text] [Related]
17. [Effect of weightlessness on the skeletal development of the rat fetus]. Denisova LA. Kosm Biol Aviakosm Med; 1986 Jan 30; 20(4):60-3. PubMed ID: 3762055 [Abstract] [Full Text] [Related]
18. [Comparative study of the effect of weightlessness and artificial gravity on the density, ash, calcium, and phosphorus content of calcified tissues]. Prokhonchukov AA, Komissarova NA, Zhizhina NA, Volozhin AI. Kosm Biol Aviakosm Med; 1980 Jan 30; 14(4):23-6. PubMed ID: 7421095 [Abstract] [Full Text] [Related]
20. Use of 85Sr as an indicator of bone mineral replacement in dogs after disuse demineralization. Palmer HE, Karagianes MT. Aviat Space Environ Med; 1976 Jan 30; 47(1):17-9. PubMed ID: 1247429 [Abstract] [Full Text] [Related] Page: [Next] [New Search]