These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 7692866

  • 1. Ion transport through gramicidin A. Water structure and functionality.
    Poxleitner M, Seitz-Beywl J, Heinzinger K.
    Z Naturforsch C J Biosci; 1993; 48(7-8):654-65. PubMed ID: 7692866
    [Abstract] [Full Text] [Related]

  • 2. A semi-microscopic Monte Carlo study of permeation energetics in a gramicidin-like channel: the origin of cation selectivity.
    Dorman V, Partenskii MB, Jordan PC.
    Biophys J; 1996 Jan; 70(1):121-34. PubMed ID: 8770192
    [Abstract] [Full Text] [Related]

  • 3. Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy.
    Roux B, Prod'hom B, Karplus M.
    Biophys J; 1995 Mar; 68(3):876-92. PubMed ID: 7538804
    [Abstract] [Full Text] [Related]

  • 4. Simulation of voltage-driven hydrated cation transport through narrow transmembrane channels.
    Skerra A, Brickmann J.
    Biophys J; 1987 Jun; 51(6):977-83. PubMed ID: 2440486
    [Abstract] [Full Text] [Related]

  • 5. Structure and dynamics of ion transport through gramicidin A.
    Mackay DH, Berens PH, Wilson KR, Hagler AT.
    Biophys J; 1984 Aug; 46(2):229-48. PubMed ID: 6206901
    [Abstract] [Full Text] [Related]

  • 6. Energetics of K+ permeability through Gramicidin A by forward-reverse steered molecular dynamics.
    De Fabritiis G, Coveney PV, Villà-Freixa J.
    Proteins; 2008 Oct; 73(1):185-94. PubMed ID: 18412256
    [Abstract] [Full Text] [Related]

  • 7. Gramicidin channels.
    Andersen OS, Koeppe RE, Roux B.
    IEEE Trans Nanobioscience; 2005 Mar; 4(1):10-20. PubMed ID: 15816168
    [Abstract] [Full Text] [Related]

  • 8. The gramicidin A channel: a review of its permeability characteristics with special reference to the single-file aspect of transport.
    Finkelstein A, Andersen OS.
    J Membr Biol; 1981 Apr 30; 59(3):155-71. PubMed ID: 6165825
    [Abstract] [Full Text] [Related]

  • 9. Energetics of ion permeation, rejection, binding, and block in gramicidin A from free energy simulations.
    Baştuğ T, Kuyucak S.
    Biophys J; 2006 Jun 01; 90(11):3941-50. PubMed ID: 16533834
    [Abstract] [Full Text] [Related]

  • 10. Ion-water and water-water interactions in a gramicidinlike channel: effects due to group polarizability and backbone flexibility.
    Duca KA, Jordan PC.
    Biophys Chem; 1997 Apr 22; 65(2-3):123-41. PubMed ID: 9175269
    [Abstract] [Full Text] [Related]

  • 11. Theoretical study of the structure and dynamic fluctuations of dioxolane-linked gramicidin channels.
    Yu CH, Cukierman S, Pomès R.
    Biophys J; 2003 Feb 22; 84(2 Pt 1):816-31. PubMed ID: 12547766
    [Abstract] [Full Text] [Related]

  • 12. Crystal structure of the gramicidin/potassium thiocyanate complex.
    Doyle DA, Wallace BA.
    J Mol Biol; 1997 Mar 14; 266(5):963-77. PubMed ID: 9086274
    [Abstract] [Full Text] [Related]

  • 13. Ion permeation through the gramicidin channel: atomically detailed modeling by the Stochastic Difference Equation.
    Siva K, Elber R.
    Proteins; 2003 Jan 01; 50(1):63-80. PubMed ID: 12471600
    [Abstract] [Full Text] [Related]

  • 14. Molecular dynamics simulation of cation motion in water-filled gramicidinlike pores.
    Lee WK, Jordan PC.
    Biophys J; 1984 Dec 01; 46(6):805-19. PubMed ID: 6083812
    [Abstract] [Full Text] [Related]

  • 15. Water transport and ion-water interaction in the gramicidin channel.
    Dani JA, Levitt DG.
    Biophys J; 1981 Aug 01; 35(2):501-8. PubMed ID: 6168311
    [Abstract] [Full Text] [Related]

  • 16. Molecular dynamics simulations of the gramicidin A-dimyristoylphosphatidylcholine system with an ion in the channel pore region.
    Tang YZ, Chen WZ, Wang CX.
    Eur Biophys J; 2000 Aug 01; 29(7):523-34. PubMed ID: 11156294
    [Abstract] [Full Text] [Related]

  • 17. Role of protein flexibility in ion permeation: a case study in gramicidin A.
    Baştuğ T, Gray-Weale A, Patra SM, Kuyucak S.
    Biophys J; 2006 Apr 01; 90(7):2285-96. PubMed ID: 16415054
    [Abstract] [Full Text] [Related]

  • 18. Time-correlation analysis of simulated water motion in flexible and rigid gramicidin channels.
    Chiu SW, Jakobsson E, Subramaniam S, McCammon JA.
    Biophys J; 1991 Jul 01; 60(1):273-85. PubMed ID: 1715766
    [Abstract] [Full Text] [Related]

  • 19. Valence selectivity of the gramicidin channel: a molecular dynamics free energy perturbation study.
    Roux B.
    Biophys J; 1996 Dec 01; 71(6):3177-85. PubMed ID: 8968588
    [Abstract] [Full Text] [Related]

  • 20. Gramicidin channel selectivity. Molecular mechanics calculations for formamidinium, guanidinium, and acetamidinium.
    Turano B, Pear M, Busath D.
    Biophys J; 1992 Jul 01; 63(1):152-61. PubMed ID: 1384733
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.