These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 7695087

  • 1. Kinlsq: a program for fitting kinetics data with numerically integrated rate equations and its application to the analysis of slow, tight-binding inhibition data.
    Gutheil WG, Kettner CA, Bachovchin WW.
    Anal Biochem; 1994 Nov 15; 223(1):13-20. PubMed ID: 7695087
    [Abstract] [Full Text] [Related]

  • 2. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables.
    Liao F, Zhu XY, Wang YM, Zuo YP.
    J Biochem Biophys Methods; 2005 Jan 31; 62(1):13-24. PubMed ID: 15656940
    [Abstract] [Full Text] [Related]

  • 3. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M.
    Biochem Mol Biol Educ; 2011 Jan 31; 39(2):117-25. PubMed ID: 21445903
    [Abstract] [Full Text] [Related]

  • 4. Application of the Van Slyke-Cullen irreversible mechanism in the analysis of enzymatic progress curves.
    Kuzmic P.
    Anal Biochem; 2009 Nov 15; 394(2):287-9. PubMed ID: 19627979
    [Abstract] [Full Text] [Related]

  • 5. Interpreting complex binding kinetics from optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and numerical integration.
    Morton TA, Myszka DG, Chaiken IM.
    Anal Biochem; 1995 May 01; 227(1):176-85. PubMed ID: 7668379
    [Abstract] [Full Text] [Related]

  • 6. Explicit analytic approximations for time-dependent solutions of the generalized integrated Michaelis-Menten equation.
    Goličnik M.
    Anal Biochem; 2011 Apr 15; 411(2):303-5. PubMed ID: 21241654
    [Abstract] [Full Text] [Related]

  • 7. A simple computer program with statistical tests for the analysis of enzyme kinetics.
    Brooks SP.
    Biotechniques; 1992 Dec 15; 13(6):906-11. PubMed ID: 1476744
    [Abstract] [Full Text] [Related]

  • 8. Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase.
    Kuzmic P.
    Anal Biochem; 1996 Jun 01; 237(2):260-73. PubMed ID: 8660575
    [Abstract] [Full Text] [Related]

  • 9. Estimation of kinetic parameters for enzyme-inhibition reaction models using direct time-dependent equations for reactant concentrations.
    Goličnik M.
    Acta Chim Slov; 2012 Mar 01; 59(1):207-11. PubMed ID: 24061194
    [Abstract] [Full Text] [Related]

  • 10. Sigmoidal substrate saturation curves in Michaelis-Menten mechanism as an artefact.
    Fischer E, Keleti T.
    Acta Biochim Biophys Acad Sci Hung; 1975 Mar 01; 10(3):221-7. PubMed ID: 1211106
    [Abstract] [Full Text] [Related]

  • 11. The integrated Michaelis-Menten rate equation: déjà vu or vu jàdé?
    Goličnik M.
    J Enzyme Inhib Med Chem; 2013 Aug 01; 28(4):879-93. PubMed ID: 22630075
    [Abstract] [Full Text] [Related]

  • 12. Explicit reformulations of time-dependent solution for a Michaelis-Menten enzyme reaction model.
    Golicnik M.
    Anal Biochem; 2010 Nov 01; 406(1):94-6. PubMed ID: 20599638
    [Abstract] [Full Text] [Related]

  • 13. A simple method for determining kinetic constants of slow, tight-binding inhibition.
    Wang ZX.
    Anal Biochem; 1993 Sep 01; 213(2):370-7. PubMed ID: 8238913
    [Abstract] [Full Text] [Related]

  • 14. Analysis of binding of monoclonal antibody to a malarial peptide by surface plasmon resonance biosensor and integrated rate equations.
    Wohlhueter RM, Parekh K, Udhayakumar V, Fang S, Lal AA.
    J Immunol; 1994 Jul 01; 153(1):181-9. PubMed ID: 8207235
    [Abstract] [Full Text] [Related]

  • 15. Enzyme kinetics at high enzyme concentration.
    Schnell S, Maini PK.
    Bull Math Biol; 2000 May 01; 62(3):483-99. PubMed ID: 10812718
    [Abstract] [Full Text] [Related]

  • 16. Enzymatic reaction of silent substrates: kinetic theory and application to the serine protease chymotrypsin.
    Case A, Huskey WP, Stein RL.
    Biochemistry; 2003 Apr 29; 42(16):4727-32. PubMed ID: 12705836
    [Abstract] [Full Text] [Related]

  • 17. Slow-binding inhibition of gamma-aminobutyric acid aminotransferase by hydrazine analogues.
    Lightcap ES, Silverman RB.
    J Med Chem; 1996 Feb 02; 39(3):686-94. PubMed ID: 8576911
    [Abstract] [Full Text] [Related]

  • 18. A two-step computer-assisted method for deriving steady-state rate equations.
    Fromm SJ, Fromm HJ.
    Biochem Biophys Res Commun; 1999 Nov 19; 265(2):448-52. PubMed ID: 10558887
    [Abstract] [Full Text] [Related]

  • 19. Surface enzyme kinetics for biopolymer microarrays: a combination of Langmuir and Michaelis-Menten concepts.
    Lee HJ, Wark AW, Goodrich TT, Fang S, Corn RM.
    Langmuir; 2005 Apr 26; 21(9):4050-7. PubMed ID: 15835973
    [Abstract] [Full Text] [Related]

  • 20. A new graphical method for determining parameters in Michaelis-Menten-type kinetics for enzymatic lactose hydrolysis.
    Yang ST, Okos MR.
    Biotechnol Bioeng; 1989 Sep 26; 34(6):763-73. PubMed ID: 18588163
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.