These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 7711269

  • 1. Acetylcholinesterase: diffusional encounter rate constants for dumbbell models of ligand.
    Antosiewicz J, Gilson MK, Lee IH, McCammon JA.
    Biophys J; 1995 Jan; 68(1):62-8. PubMed ID: 7711269
    [Abstract] [Full Text] [Related]

  • 2. Acetylcholinesterase: role of the enzyme's charge distribution in steering charged ligands toward the active site.
    Antosiewicz J, Wlodek ST, McCammon JA.
    Biopolymers; 1996 Jul; 39(1):85-94. PubMed ID: 8924629
    [Abstract] [Full Text] [Related]

  • 3. Correlation between rate of enzyme-substrate diffusional encounter and average Boltzmann factor around active site.
    Zhou HX, Briggs JM, Tara S, McCammon JA.
    Biopolymers; 1998 Apr; 45(5):355-60. PubMed ID: 9530014
    [Abstract] [Full Text] [Related]

  • 4. Acetylcholinesterase: electrostatic steering increases the rate of ligand binding.
    Tan RC, Truong TN, McCammon JA, Sussman JL.
    Biochemistry; 1993 Jan 19; 32(2):401-3. PubMed ID: 8422348
    [Abstract] [Full Text] [Related]

  • 5. Simulation of charge-mutant acetylcholinesterases.
    Antosiewicz J, McCammon JA, Wlodek ST, Gilson MK.
    Biochemistry; 1995 Apr 04; 34(13):4211-9. PubMed ID: 7703233
    [Abstract] [Full Text] [Related]

  • 6. Effective charge on acetylcholinesterase active sites determined from the ionic strength dependence of association rate constants with cationic ligands.
    Nolte HJ, Rosenberry TL, Neumann E.
    Biochemistry; 1980 Aug 05; 19(16):3705-11. PubMed ID: 7407068
    [Abstract] [Full Text] [Related]

  • 7. Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson-Nernst-Planck approach.
    Zhou YC, Lu B, Huber GA, Holst MJ, McCammon JA.
    J Phys Chem B; 2008 Jan 17; 112(2):270-5. PubMed ID: 18052268
    [Abstract] [Full Text] [Related]

  • 8. Pathways of ligand clearance in acetylcholinesterase by multiple copy sampling.
    Van Belle D, De Maria L, Iurcu G, Wodak SJ.
    J Mol Biol; 2000 May 12; 298(4):705-26. PubMed ID: 10788331
    [Abstract] [Full Text] [Related]

  • 9. Theoretical and experimental investigations of electrostatic effects on acetylcholinesterase catalysis and inhibition.
    Malany S, Baker N, Verweyst M, Medhekar R, Quinn DM, Velan B, Kronman C, Shafferman A.
    Chem Biol Interact; 1999 May 14; 119-120():99-110. PubMed ID: 10421443
    [Abstract] [Full Text] [Related]

  • 10. Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect.
    Szegletes T, Mallender WD, Thomas PJ, Rosenberry TL.
    Biochemistry; 1999 Jan 05; 38(1):122-33. PubMed ID: 9890890
    [Abstract] [Full Text] [Related]

  • 11. Enzymatic activity versus structural dynamics: the case of acetylcholinesterase tetramer.
    Gorfe AA, Lu B, Yu Z, McCammon JA.
    Biophys J; 2009 Aug 05; 97(3):897-905. PubMed ID: 19651048
    [Abstract] [Full Text] [Related]

  • 12. Differential effects of "peripheral" site ligands on Torpedo and chicken acetylcholinesterase.
    Eichler J, Anselment A, Sussman JL, Massoulié J, Silman I.
    Mol Pharmacol; 1994 Feb 05; 45(2):335-40. PubMed ID: 8114681
    [Abstract] [Full Text] [Related]

  • 13. Open "back door" in a molecular dynamics simulation of acetylcholinesterase.
    Gilson MK, Straatsma TP, McCammon JA, Ripoll DR, Faerman CH, Axelsen PH, Silman I, Sussman JL.
    Science; 1994 Mar 04; 263(5151):1276-8. PubMed ID: 8122110
    [Abstract] [Full Text] [Related]

  • 14. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.
    Johnson JL, Cusack B, Davies MP, Fauq A, Rosenberry TL.
    Biochemistry; 2003 May 13; 42(18):5438-52. PubMed ID: 12731886
    [Abstract] [Full Text] [Related]

  • 15. Electrostatic steering at acetylcholine binding sites.
    Meltzer RH, Thompson E, Soman KV, Song XZ, Ebalunode JO, Wensel TG, Briggs JM, Pedersen SE.
    Biophys J; 2006 Aug 15; 91(4):1302-14. PubMed ID: 16751247
    [Abstract] [Full Text] [Related]

  • 16. Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands.
    Szegletes T, Mallender WD, Rosenberry TL.
    Biochemistry; 1998 Mar 24; 37(12):4206-16. PubMed ID: 9521743
    [Abstract] [Full Text] [Related]

  • 17. Interactions between the peripheral site and the acylation site in acetylcholinesterase.
    Rosenberry TL, Johnson JL, Cusack B, Thomas JL, Emani S, Venkatasubban KS.
    Chem Biol Interact; 2005 Dec 15; 157-158():181-9. PubMed ID: 16256966
    [Abstract] [Full Text] [Related]

  • 18. Correlation between the substrate structure and the rate of acetylcholinesterase hydrolysis modeled with the combined quantum mechanical/molecular mechanical studies.
    Lushchekina SV, Nemukhin AV, Morozov DI, Varfolomeev SD.
    Chem Biol Interact; 2010 Sep 06; 187(1-3):59-63. PubMed ID: 20398640
    [Abstract] [Full Text] [Related]

  • 19. Aspartate 74 as a primary determinant in acetylcholinesterase governing specificity to cationic organophosphonates.
    Hosea NA, Radić Z, Tsigelny I, Berman HA, Quinn DM, Taylor P.
    Biochemistry; 1996 Aug 20; 35(33):10995-1004. PubMed ID: 8718893
    [Abstract] [Full Text] [Related]

  • 20. Computer simulation of protein-protein association kinetics: acetylcholinesterase-fasciculin.
    Elcock AH, Gabdoulline RR, Wade RC, McCammon JA.
    J Mol Biol; 1999 Aug 06; 291(1):149-62. PubMed ID: 10438612
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.