These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


200 related items for PubMed ID: 7712344

  • 1. The adverse effects of long-term cassava (Manihot esculenta Crantz) consumption.
    Kamalu BP.
    Int J Food Sci Nutr; 1995 Feb; 46(1):65-93. PubMed ID: 7712344
    [Abstract] [Full Text] [Related]

  • 2. Neurotoxic effect of linamarin in rats associated with cassava (Manihot esculenta Crantz) consumption.
    Rivadeneyra-Domínguez E, Vázquez-Luna A, Rodríguez-Landa JF, Díaz-Sobac R.
    Food Chem Toxicol; 2013 Sep; 59():230-5. PubMed ID: 23778051
    [Abstract] [Full Text] [Related]

  • 3. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta).
    Siritunga D, Sayre R.
    Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626
    [Abstract] [Full Text] [Related]

  • 4. Metabolic fates in humans of linamarin in cassava flour ingested as stiff porridge.
    Carlsson L, Mlingi N, Juma A, Ronquist G, Rosling H.
    Food Chem Toxicol; 1999 Apr; 37(4):307-12. PubMed ID: 10418947
    [Abstract] [Full Text] [Related]

  • 5. Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use.
    Imakumbili MLE, Semu E, Semoka JMR, Abass A, Mkamilo G.
    PLoS One; 2020 Apr; 15(2):e0228641. PubMed ID: 32053630
    [Abstract] [Full Text] [Related]

  • 6. New aspects in pathogenesis of konzo: neural cell damage directly caused by linamarin contained in cassava (Manihot esculenta Crantz).
    Sreeja VG, Nagahara N, Li Q, Minami M.
    Br J Nutr; 2003 Aug; 90(2):467-72. PubMed ID: 12908909
    [Abstract] [Full Text] [Related]

  • 7. Moisture-pressure combination treatments for cyanide reduction in grated cassava.
    Harris MA, Koomson CK.
    J Food Sci; 2011 Aug; 76(1):T20-4. PubMed ID: 21535726
    [Abstract] [Full Text] [Related]

  • 8. Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba.
    Hernández T, Lundquist P, Oliveira L, Pérez Cristiá R, Rodriguez E, Rosling H.
    Nat Toxins; 1995 Aug; 3(2):114-7. PubMed ID: 7613736
    [Abstract] [Full Text] [Related]

  • 9. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava (Manihot esculenta Crantz) root.
    Ogbonna AC, Braatz de Andrade LR, Rabbi IY, Mueller LA, Jorge de Oliveira E, Bauchet GJ.
    Plant J; 2021 Feb; 105(3):754-770. PubMed ID: 33164279
    [Abstract] [Full Text] [Related]

  • 10. Cassava cyanogens and fish mercury are high but safely consumed in the diet of native Amazonians.
    Dórea JG.
    Ecotoxicol Environ Saf; 2004 Mar; 57(3):248-56. PubMed ID: 15041248
    [Abstract] [Full Text] [Related]

  • 11. Pathological changes in growing dogs fed on a balanced cassava (Manihot esculenta Crantz) diet.
    Kamalu BP.
    Br J Nutr; 1993 May; 69(3):921-34. PubMed ID: 8329365
    [Abstract] [Full Text] [Related]

  • 12. Loss of residual cyanogens in a cassava food during short-term storage.
    Onabolu AO, Oluwole OS, Bokanga M.
    Int J Food Sci Nutr; 2002 Jul; 53(4):343-9. PubMed ID: 12090030
    [Abstract] [Full Text] [Related]

  • 13. Low cyanide exposure from consumption of cassava in Dar es Salaam, Tanzania.
    Mlingi N, Abrahamsson M, Yuen J, Gebre-Medhin M, Rosling H.
    Nat Toxins; 1998 Jul; 6(2):67-72. PubMed ID: 9888632
    [Abstract] [Full Text] [Related]

  • 14. Generation of cyanogen-free transgenic cassava.
    Siritunga D, Sayre RT.
    Planta; 2003 Jul; 217(3):367-73. PubMed ID: 14520563
    [Abstract] [Full Text] [Related]

  • 15. A survey of total hydrocyanic acid content in ready-to-eat cassava-based chips obtained in the Australian market in 2008.
    Miles D, Jansson E, Mai MC, Azer M, Day P, Shadbolt C, Stitt V, Kiermeier A, Szabo E.
    J Food Prot; 2011 Jun; 74(6):980-5. PubMed ID: 21669076
    [Abstract] [Full Text] [Related]

  • 16. Toxic effects of prolonged administration of leaves of cassava (Manihot esculenta Crantz) to goats.
    Soto-Blanco B, Górniak SL.
    Exp Toxicol Pathol; 2010 Jul; 62(4):361-6. PubMed ID: 19559583
    [Abstract] [Full Text] [Related]

  • 17. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes.
    Andersen MD, Busk PK, Svendsen I, Møller BL.
    J Biol Chem; 2000 Jan 21; 275(3):1966-75. PubMed ID: 10636899
    [Abstract] [Full Text] [Related]

  • 18. The toxic effects of cassava (manihot esculenta grantz) diets on humans: a review.
    Aregheore EM, Agunbiade OO.
    Vet Hum Toxicol; 1991 Jun 21; 33(3):274-5. PubMed ID: 1650055
    [Abstract] [Full Text] [Related]

  • 19. Characterization of sucrose uptake system in cassava (Manihot esculenta Crantz).
    Eksittikul T, Chulavatnatol M, Limpaseni T.
    Plant Sci; 2001 Mar 21; 160(4):733-737. PubMed ID: 11448748
    [Abstract] [Full Text] [Related]

  • 20. New paths of cyanogenesis from enzymatic-promoted cleavage of β-cyanoglucosides are suggested by a mixed DFT/QTAIM approach.
    Díaz-Sobac R, Vázquez-Luna A, Rivadeneyra-Domínguez E, Rodríguez-Landa JF, Guerrero T, Durand-Niconoff JS.
    J Mol Model; 2019 Sep 03; 25(9):295. PubMed ID: 31478108
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.