These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


277 related items for PubMed ID: 7712762

  • 21. Simulated mouth-to-mouth ventilation and chest compressions (bystander cardiopulmonary resuscitation) improves outcome in a swine model of prehospital pediatric asphyxial cardiac arrest.
    Berg RA, Hilwig RW, Kern KB, Babar I, Ewy GA.
    Crit Care Med; 1999 Sep; 27(9):1893-9. PubMed ID: 10507615
    [Abstract] [Full Text] [Related]

  • 22. Selective brain cooling in infant piglets after cardiac arrest and resuscitation.
    Gelman B, Schleien CL, Lohe A, Kuluz JW.
    Crit Care Med; 1996 Jun; 24(6):1009-17. PubMed ID: 8681567
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Effects of epinephrine in a pig model of hypothermic cardiac arrest and closed-chest cardiopulmonary resuscitation combined with active rewarming.
    Kornberger E, Lindner KH, Mayr VD, Schwarz B, Rackwitz KS, Wenzel V, Krismer AC, Mair P.
    Resuscitation; 2001 Sep; 50(3):301-8. PubMed ID: 11719160
    [Abstract] [Full Text] [Related]

  • 25. Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest.
    Yannopoulos D, Nadkarni VM, McKnite SH, Rao A, Kruger K, Metzger A, Benditt DG, Lurie KG.
    Circulation; 2005 Aug 09; 112(6):803-11. PubMed ID: 16061732
    [Abstract] [Full Text] [Related]

  • 26. Augmentation of tissue perfusion by a novel compression device increases neurologically intact survival in a porcine model of prolonged cardiac arrest.
    Ikeno F, Kaneda H, Hongo Y, Sakanoue Y, Nolasco C, Emami S, Lyons J, Rezaee M.
    Resuscitation; 2006 Jan 09; 68(1):109-18. PubMed ID: 16325982
    [Abstract] [Full Text] [Related]

  • 27. A randomized, blinded trial of high-dose epinephrine versus standard-dose epinephrine in a swine model of pediatric asphyxial cardiac arrest.
    Berg RA, Otto CW, Kern KB, Hilwig RW, Sanders AB, Henry CP, Ewy GA.
    Crit Care Med; 1996 Oct 09; 24(10):1695-700. PubMed ID: 8874308
    [Abstract] [Full Text] [Related]

  • 28. Effect of standard-dose versus high-dose epinephrine on myocardial high-energy phosphates during ventricular fibrillation and closed-chest CPR.
    Hoekstra JW, Griffith R, Kelley R, Cody RJ, Lewis D, Scheatzle M, Brown CG.
    Ann Emerg Med; 1993 Sep 09; 22(9):1385-91. PubMed ID: 8363112
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation.
    Niemann JT, Rosborough JP, Kassabian L, Salami B.
    Resuscitation; 2006 May 09; 69(2):295-301. PubMed ID: 16457933
    [Abstract] [Full Text] [Related]

  • 32. Active compression-decompression resuscitation: a novel method of cardiopulmonary resuscitation.
    Cohen TJ, Tucker KJ, Redberg RF, Lurie KG, Chin MC, Dutton JP, Scheinman MM, Schiller NB, Callaham ML.
    Am Heart J; 1992 Nov 09; 124(5):1145-50. PubMed ID: 1442479
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Effect of arrest time and cerebral perfusion pressure during cardiopulmonary resuscitation on cerebral blood flow, metabolism, adenosine triphosphate recovery, and pH in dogs.
    Shaffner DH, Eleff SM, Brambrink AM, Sugimoto H, Izuta M, Koehler RC, Traystman RJ.
    Crit Care Med; 1999 Jul 09; 27(7):1335-42. PubMed ID: 10446829
    [Abstract] [Full Text] [Related]

  • 36. Determinants of blood flow to vital organs during cardiopulmonary resuscitation in dogs.
    Halperin HR, Tsitlik JE, Guerci AD, Mellits ED, Levin HR, Shi AY, Chandra N, Weisfeldt ML.
    Circulation; 1986 Mar 09; 73(3):539-50. PubMed ID: 3948359
    [Abstract] [Full Text] [Related]

  • 37. Vasopressin-mediated adrenocorticotropin release increases plasma cortisol concentrations during cardiopulmonary resuscitation.
    Kornberger E, Prengel AW, Krismer A, Schwarz B, Wenzel V, Lindner KH, Mair P.
    Crit Care Med; 2000 Oct 09; 28(10):3517-21. PubMed ID: 11057810
    [Abstract] [Full Text] [Related]

  • 38. Effects of combined administration of vasopressin, epinephrine, and norepinephrine during cardiopulmonary resuscitation in pigs.
    Prengel AW, Linstedt U, Zenz M, Wenzel V.
    Crit Care Med; 2005 Nov 09; 33(11):2587-91. PubMed ID: 16276184
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation.
    Schmölzer GM, O'Reilly M, Labossiere J, Lee TF, Cowan S, Nicoll J, Bigam DL, Cheung PY.
    Resuscitation; 2014 Feb 09; 85(2):270-5. PubMed ID: 24161768
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.