These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 7715102

  • 1. [Evaluation of partial volume effect in quantitative measurement of regional cerebral blood flow using positron emission tomography].
    Narita Y, Iida H, Ardekani BA, Hatazawa J, Kanno I, Nakamura T, Uemura K.
    Kaku Igaku; 1995 Feb; 32(2):163-72. PubMed ID: 7715102
    [Abstract] [Full Text] [Related]

  • 2. [Evaluation of partial volume effect in quantitative measurement of regional cerebral blood flow in single photon emission computed tomography--effects of limited spatial resolution and first-pass extraction fraction].
    Iida H, Narita Y, Ardekani BA, Hatazawa J, Nakazawa M, Kanno I, Uemura K.
    Kaku Igaku; 1995 Feb; 32(2):155-62. PubMed ID: 7715101
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: II. Normal values and gray matter blood flow response to visual activation.
    Law I, Iida H, Holm S, Nour S, Rostrup E, Svarer C, Paulson OB.
    J Cereb Blood Flow Metab; 2000 Aug; 20(8):1252-63. PubMed ID: 10950384
    [Abstract] [Full Text] [Related]

  • 5. A computationally efficient algorithm for determining regional cerebral blood flow in heterogeneous tissues by positron emission tomography.
    Schmidt K, Sokoloff L.
    IEEE Trans Med Imaging; 2001 Jul; 20(7):618-32. PubMed ID: 11465468
    [Abstract] [Full Text] [Related]

  • 6. The influence of tissue heterogeneity on results of fitting nonlinear model equations to regional tracer uptake curves: with an application to compartmental models used in positron emission tomography.
    Herholz K, Patlak CS.
    J Cereb Blood Flow Metab; 1987 Apr; 7(2):214-29. PubMed ID: 3494028
    [Abstract] [Full Text] [Related]

  • 7. Quantitation of regional cerebral blood flow with 15O-butanol and positron emission tomography in humans.
    Herzog H, Seitz RJ, Tellmann L, Rota Kops E, Jülicher F, Schlaug G, Kleinschmidt A, Müller-Gärtner HW.
    J Cereb Blood Flow Metab; 1996 Jul; 16(4):645-9. PubMed ID: 8964804
    [Abstract] [Full Text] [Related]

  • 8. Human brain mapping under increasing cognitive complexity using regional cerebral blood flow measurements and positron emission tomography.
    Law I.
    Dan Med Bull; 2007 Nov; 54(4):289-305. PubMed ID: 18208679
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. A multicenter validation of regional cerebral blood flow quantitation using [123I]iodoamphetamine and single photon emission computed tomography.
    Iida H, Akutsu T, Endo K, Fukuda H, Inoue T, Ito H, Koga S, Komatani A, Kuwabara Y, Momose T, Nishizawa S, Odano I, Ohkubo M, Sasaki Y, Suzuki H, Tanada S, Toyama H, Yonekura Y, Yoshida T, Uemura K.
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):781-93. PubMed ID: 8784223
    [Abstract] [Full Text] [Related]

  • 14. Quantitative comparison of the bolus and steady-state methods for measurement of cerebral perfusion and oxygen metabolism: positron emission tomography study using 15O-gas and water.
    Okazawa H, Yamauchi H, Sugimoto K, Takahashi M, Toyoda H, Kishibe Y, Shio H.
    J Cereb Blood Flow Metab; 2001 Jul; 21(7):793-803. PubMed ID: 11435791
    [Abstract] [Full Text] [Related]

  • 15. Quantitative measurement of local cerebral blood flow in humans by positron computed tomography and 15O-water.
    Huang SC, Carson RE, Hoffman EJ, Carson J, MacDonald N, Barrio JR, Phelps ME.
    J Cereb Blood Flow Metab; 1983 Jun; 3(2):141-53. PubMed ID: 6601663
    [Abstract] [Full Text] [Related]

  • 16. Quantitative positron emission tomography and single photon emission computed tomography measurements of human cerebral blood flow.
    Lagrèze HL, Levine RL.
    Am J Physiol Imaging; 1987 Jun; 2(4):208-15. PubMed ID: 3330454
    [Abstract] [Full Text] [Related]

  • 17. Quantitative mapping of regional cerebral blood flow using iodine-123-IMP and SPECT.
    Iida H, Itoh H, Nakazawa M, Hatazawa J, Nishimura H, Onishi Y, Uemura K.
    J Nucl Med; 1994 Dec; 35(12):2019-30. PubMed ID: 7989987
    [Abstract] [Full Text] [Related]

  • 18. Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT.
    Iida H, Narita Y, Kado H, Kashikura A, Sugawara S, Shoji Y, Kinoshita T, Ogawa T, Eberl S.
    J Nucl Med; 1998 Jan; 39(1):181-9. PubMed ID: 9443759
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. [A study on accuracy of rCBF measurements using the conventional microsphere method with N-isopropyl-p-[123I]iodoamphetamine and SPECT].
    Ohkubo M, Odano I, Takahashi N, Takahashi M, Ohtaki H, Noguchi E, Kasahara T, Hatano M, Yokoi T.
    Kaku Igaku; 1995 Dec; 32(12):1323-31. PubMed ID: 8587214
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.