These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 7720400

  • 21. The effect of linomide on the migration and the proliferation of capillary endothelial cells elicited by vascular endothelial growth factor.
    Parenti A, Donnini S, Morbidelli L, Granger HJ, Ziche M.
    Br J Pharmacol; 1996 Oct; 119(4):619-21. PubMed ID: 8904633
    [Abstract] [Full Text] [Related]

  • 22. Effect of COX inhibitors on VEGF-induced retinal vascular leakage and experimental corneal and choroidal neovascularization.
    Castro MR, Lutz D, Edelman JL.
    Exp Eye Res; 2004 Aug; 79(2):275-85. PubMed ID: 15325574
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Isolation of microvascular endothelial cells from cadaveric corneal limbus.
    Gillies PJ, Bray LJ, Richardson NA, Chirila TV, Harkin DG.
    Exp Eye Res; 2015 Feb; 131():20-8. PubMed ID: 25499210
    [Abstract] [Full Text] [Related]

  • 25. Prevention and treatment of corneal neovascularization: comparison of different doses of subconjunctival bevacizumab with corticosteroid in experimental rats.
    Hashemian MN, Moghimi S, Kiumehr S, Riazi M, Amoli FA.
    Ophthalmic Res; 2009 Feb; 42(2):90-5. PubMed ID: 19546599
    [Abstract] [Full Text] [Related]

  • 26. Short-Term Ultraviolet A Irradiation Leads to Dysfunction of the Limbal Niche Cells and an Antilymphangiogenic and Anti-inflammatory Micromilieu.
    Notara M, Refaian N, Braun G, Steven P, Bock F, Cursiefen C.
    Invest Ophthalmol Vis Sci; 2016 Mar; 57(3):928-39. PubMed ID: 26943156
    [Abstract] [Full Text] [Related]

  • 27. Corneal neovascularization induced by xenografts or chemical cautery. Inhibition by cyclosporin A.
    Benelli U, Ross JR, Nardi M, Klintworth GK.
    Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):274-82. PubMed ID: 9040459
    [Abstract] [Full Text] [Related]

  • 28. Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells.
    Sholley MM, Ferguson GP, Seibel HR, Montour JL, Wilson JD.
    Lab Invest; 1984 Dec; 51(6):624-34. PubMed ID: 6209468
    [Abstract] [Full Text] [Related]

  • 29. Age-related changes in murine limbal lymphatic vessels and corneal lymphangiogenesis.
    Hos D, Bachmann B, Bock F, Onderka J, Cursiefen C.
    Exp Eye Res; 2008 Nov; 87(5):427-32. PubMed ID: 18755186
    [Abstract] [Full Text] [Related]

  • 30. Transforming growth factor-beta receptor expression in human cornea.
    Joyce NC, Zieske JD.
    Invest Ophthalmol Vis Sci; 1997 Sep; 38(10):1922-8. PubMed ID: 9331255
    [Abstract] [Full Text] [Related]

  • 31. Short-Term Effects of Y-27632, a Rho-Associated Protein Kinase Inhibitor, on Chromatin Supraorganization and DNA Amount in Epithelial Cells of the Rat Cornea and Limbus.
    Aldrovani M, Barros Sobrinho AAF, Mairos FS, Laus JL.
    Cornea; 2017 Jul; 36(7):845-853. PubMed ID: 28594698
    [Abstract] [Full Text] [Related]

  • 32. Mouse strain-dependent heterogeneity of resting limbal vasculature.
    Chan CK, Pham LN, Chinn C, Spee C, Ryan SJ, Akhurst RJ, Hinton DR.
    Invest Ophthalmol Vis Sci; 2004 Feb; 45(2):441-7. PubMed ID: 14744883
    [Abstract] [Full Text] [Related]

  • 33. SDF-1 activity on microvascular endothelial cells: consequences on angiogenesis in in vitro and in vivo models.
    Mirshahi F, Pourtau J, Li H, Muraine M, Trochon V, Legrand E, Vannier J, Soria J, Vasse M, Soria C.
    Thromb Res; 2000 Sep 15; 99(6):587-94. PubMed ID: 10974345
    [Abstract] [Full Text] [Related]

  • 34. Inhibitory effect of rapamycin on corneal neovascularization in vitro and in vivo.
    Kwon YS, Hong HS, Kim JC, Shin JS, Son Y.
    Invest Ophthalmol Vis Sci; 2005 Feb 15; 46(2):454-60. PubMed ID: 15671269
    [Abstract] [Full Text] [Related]

  • 35. Lymphatic vessels in vascularized human corneas: immunohistochemical investigation using LYVE-1 and podoplanin.
    Cursiefen C, Schlötzer-Schrehardt U, Küchle M, Sorokin L, Breiteneder-Geleff S, Alitalo K, Jackson D.
    Invest Ophthalmol Vis Sci; 2002 Jul 15; 43(7):2127-35. PubMed ID: 12091407
    [Abstract] [Full Text] [Related]

  • 36. Contribution of bone marrow-derived pericyte precursor cells to corneal vasculogenesis.
    Ozerdem U, Alitalo K, Salven P, Li A.
    Invest Ophthalmol Vis Sci; 2005 Oct 15; 46(10):3502-6. PubMed ID: 16186326
    [Abstract] [Full Text] [Related]

  • 37. Antiangiogenic potential of camptothecin and topotecan.
    Clements MK, Jones CB, Cumming M, Daoud SS.
    Cancer Chemother Pharmacol; 1999 Oct 15; 44(5):411-6. PubMed ID: 10501915
    [Abstract] [Full Text] [Related]

  • 38. [Transplanted vascular endothelial cells to replace corneal endothelial cells by improved anterior chamber injection].
    Zhu Q, Hu Z, Sun X, Hu M, Liu H, Yang Z.
    Zhonghua Yan Ke Za Zhi; 2014 Apr 15; 50(4):277-84. PubMed ID: 24931154
    [Abstract] [Full Text] [Related]

  • 39. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability.
    Cao R, Eriksson A, Kubo H, Alitalo K, Cao Y, Thyberg J.
    Circ Res; 2004 Mar 19; 94(5):664-70. PubMed ID: 14739162
    [Abstract] [Full Text] [Related]

  • 40. Effects of activated omental cells on rat limbal corneal alkali injury.
    Bu P, Vin AP, Sethupathi P, Ambrecht LA, Zhai Y, Nikolic N, Qiao L, Bouchard CS.
    Exp Eye Res; 2014 Apr 19; 121():143-6. PubMed ID: 24582890
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.