These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


297 related items for PubMed ID: 7727404

  • 21. Structure-function studies of the brain-type glucose transporter, GLUT3: alanine-scanning mutagenesis of putative transmembrane helix 8.
    Seatter MJ, Kane S, Porter LM, Gould GW.
    Biochem Soc Trans; 1997 Aug; 25(3):474S. PubMed ID: 9388695
    [No Abstract] [Full Text] [Related]

  • 22. Functional expression of a plant plasma membrane transporter in Xenopus oocytes.
    Boorer KJ, Forde BG, Leigh RA, Miller AJ.
    FEBS Lett; 1992 May 11; 302(2):166-8. PubMed ID: 1633849
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes.
    Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M.
    J Biol Chem; 2000 Sep 08; 275(36):28246-53. PubMed ID: 10862609
    [Abstract] [Full Text] [Related]

  • 25. Insulin-sensitive targeting of the GLUT4 glucose transporter in L6 myoblasts is conferred by its COOH-terminal cytoplasmic tail.
    Haney PM, Levy MA, Strube MS, Mueckler M.
    J Cell Biol; 1995 May 08; 129(3):641-58. PubMed ID: 7730401
    [Abstract] [Full Text] [Related]

  • 26. Heterologous expression of rab4 reduces glucose transport and GLUT4 abundance at the cell surface in oocytes.
    Mora S, Monden I, Zorzano A, Keller K.
    Biochem J; 1997 Jun 01; 324 ( Pt 2)(Pt 2):455-9. PubMed ID: 9182703
    [Abstract] [Full Text] [Related]

  • 27. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB, Robichaud TK, Hamill S, Sultzman LA, Carruthers A.
    Biochemistry; 2005 Apr 19; 44(15):5606-16. PubMed ID: 15823019
    [Abstract] [Full Text] [Related]

  • 28. Substitution of tyrosine 293 of GLUT1 locks the transporter into an outward facing conformation.
    Mori H, Hashiramoto M, Clark AE, Yang J, Muraoka A, Tamori Y, Kasuga M, Holman GD.
    J Biol Chem; 1994 Apr 15; 269(15):11578-83. PubMed ID: 8157690
    [Abstract] [Full Text] [Related]

  • 29. Identification of an amino acid residue that lies between the exofacial vestibule and exofacial substrate-binding site of the Glut1 sugar permeation pathway.
    Mueckler M, Makepeace C.
    J Biol Chem; 1997 Nov 28; 272(48):30141-6. PubMed ID: 9374494
    [Abstract] [Full Text] [Related]

  • 30. GTP analogs suppress uptake but not transport of D-glucose analogs in Glut1 glucose transporter-expressing Xenopus oocytes.
    Wellner M, Mueckler MM, Keller K.
    FEBS Lett; 1993 Jul 19; 327(1):95-8. PubMed ID: 8335101
    [Abstract] [Full Text] [Related]

  • 31. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins.
    Burant CF, Bell GI.
    Biochemistry; 1992 Oct 27; 31(42):10414-20. PubMed ID: 1420159
    [Abstract] [Full Text] [Related]

  • 32. The large cytoplasmic loop of the glucose transporter GLUT1 is an essential structural element for function.
    Monden I, Olsowski A, Krause G, Keller K.
    Biol Chem; 2001 Nov 27; 382(11):1551-8. PubMed ID: 11767944
    [Abstract] [Full Text] [Related]

  • 33. The translocation of the glucose transporter sub-types GLUT1 and GLUT4 in isolated fat cells is differently regulated by phorbol esters.
    Vogt B, Mushack J, Seffer E, Häring HU.
    Biochem J; 1991 May 01; 275 ( Pt 3)(Pt 3):597-600. PubMed ID: 2039438
    [Abstract] [Full Text] [Related]

  • 34. Constitutively active mitogen-activated protein kinase kinase increases GLUT1 expression and recruits both GLUT1 and GLUT4 at the cell surface in 3T3-L1 adipocytes.
    Yamamoto Y, Yoshimasa Y, Koh M, Suga J, Masuzaki H, Ogawa Y, Hosoda K, Nishimura H, Watanabe Y, Inoue G, Nakao K.
    Diabetes; 2000 Mar 01; 49(3):332-9. PubMed ID: 10868953
    [Abstract] [Full Text] [Related]

  • 35. Insulin and insulin-like growth factor I (IGF-I) stimulate GLUT4 glucose transporter translocation in Xenopus oocytes.
    Mora S, Kaliman P, Chillarón J, Testar X, Palacín M, Zorzano A.
    Biochem J; 1995 Oct 01; 311 ( Pt 1)(Pt 1):59-65. PubMed ID: 7575481
    [Abstract] [Full Text] [Related]

  • 36. Carboxy-terminal vesicular stomatitis virus G protein-tagged intestinal Na+-dependent glucose cotransporter (SGLT1): maintenance of surface expression and global transport function with selective perturbation of transport kinetics and polarized expression.
    Turner JR, Lencer WI, Carlson S, Madara JL.
    J Biol Chem; 1996 Mar 29; 271(13):7738-44. PubMed ID: 8631815
    [Abstract] [Full Text] [Related]

  • 37. Functional consequences of an in vivo mutation in exon 10 of the human GLUT1 gene.
    Lange P, Gertsen E, Monden I, Klepper J, Keller K.
    FEBS Lett; 2003 Dec 04; 555(2):274-8. PubMed ID: 14644427
    [Abstract] [Full Text] [Related]

  • 38. Functional expression of tagged human Na+-glucose cotransporter in Xenopus laevis oocytes.
    Bissonnette P, Noël J, Coady MJ, Lapointe JY.
    J Physiol; 1999 Oct 15; 520 Pt 2(Pt 2):359-71. PubMed ID: 10523405
    [Abstract] [Full Text] [Related]

  • 39. Cyclic adenosine 3',5'-monophosphate regulates GLUT4 and GLUT1 glucose transporter expression and stimulates transcriptional activity of the GLUT1 promoter in muscle cells.
    Viñals F, Ferré J, Fandos C, Santalucia T, Testar X, Palacín M, Zorzano A.
    Endocrinology; 1997 Jun 15; 138(6):2521-9. PubMed ID: 9165044
    [Abstract] [Full Text] [Related]

  • 40. The differential role of Cys-421 and Cys-429 of the Glut1 glucose transporter in transport inhibition by p-chloromercuribenzenesulfonic acid (pCMBS) or cytochalasin B (CB).
    Wellner M, Monden I, Keller K.
    FEBS Lett; 1992 Sep 14; 309(3):293-6. PubMed ID: 1325374
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.