These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


192 related items for PubMed ID: 7730013

  • 21. Isolation of focal rod electroretinograms from the dark-adapted human eye.
    Sandberg MA, Pawlyk BS, Berson EL.
    Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):930-4. PubMed ID: 8603878
    [Abstract] [Full Text] [Related]

  • 22. Contribution of rod and cone pathways to the dark-adapted electroretinogram (ERG) b-wave following retinal degeneration in RCS rats.
    Pinilla I, Lund RD, Sauvé Y.
    Vision Res; 2004 Apr; 44(21):2467-74. PubMed ID: 15358082
    [Abstract] [Full Text] [Related]

  • 23. Rod photoreceptors in infant rats with a history of oxygen exposure.
    Fulton AB, Reynaud X, Hansen RM, Lemere CA, Parker C, Williams TP.
    Invest Ophthalmol Vis Sci; 1999 Jan; 40(1):168-74. PubMed ID: 9888440
    [Abstract] [Full Text] [Related]

  • 24. P23H and S334ter opsin mutations: Increasing photoreceptor outer segment n-3 fatty acid content does not affect the course of retinal degeneration.
    Martin RE, Ranchon-Cole I, Brush RS, Williamson CR, Hopkins SA, Li F, Anderson RE.
    Mol Vis; 2004 Mar 26; 10():199-207. PubMed ID: 15064683
    [Abstract] [Full Text] [Related]

  • 25. Rod contributions to the electroretinogram of the dark-adapted developing zebrafish.
    Bilotta J, Saszik S, Sutherland SE.
    Dev Dyn; 2001 Dec 26; 222(4):564-70. PubMed ID: 11748826
    [Abstract] [Full Text] [Related]

  • 26. Flash responses of mouse rod photoreceptors in the isolated retina and corneal electroretinogram: comparison of gain and kinetics.
    Heikkinen H, Vinberg F, Pitkänen M, Kommonen B, Koskelainen A.
    Invest Ophthalmol Vis Sci; 2012 Aug 17; 53(9):5653-64. PubMed ID: 22743325
    [Abstract] [Full Text] [Related]

  • 27. Life history of cones in the rhodopsin-mutant P23H-3 rat: evidence of long-term survival.
    Chrysostomou V, Stone J, Valter K.
    Invest Ophthalmol Vis Sci; 2009 May 17; 50(5):2407-16. PubMed ID: 19117918
    [Abstract] [Full Text] [Related]

  • 28. Temporal analysis of electroretinographic responses in fishes with rod-dominated and mixed rod-cone retina.
    Milosević M, Visnjić-Jeftić Z, Damjanović I, Nikcević M, Andjus P, Gacić Z.
    Gen Physiol Biophys; 2009 Sep 17; 28(3):276-82. PubMed ID: 20037193
    [Abstract] [Full Text] [Related]

  • 29. Evidence for photoreceptor changes in patients with diabetic retinopathy.
    Holopigian K, Greenstein VC, Seiple W, Hood DC, Carr RE.
    Invest Ophthalmol Vis Sci; 1997 Oct 17; 38(11):2355-65. PubMed ID: 9344359
    [Abstract] [Full Text] [Related]

  • 30. Retinal function in carriers of Bardet-Biedl syndrome.
    Cox GF, Hansen RM, Quinn N, Fulton AB.
    Arch Ophthalmol; 2003 Jun 17; 121(6):804-10. PubMed ID: 12796250
    [Abstract] [Full Text] [Related]

  • 31. Dark adaptation of rod photoreceptors in normal subjects, and in patients with Stargardt disease and an ABCA4 mutation.
    Kang Derwent JJ, Derlacki DJ, Hetling JR, Fishman GA, Birch DG, Grover S, Stone EM, Pepperberg DR.
    Invest Ophthalmol Vis Sci; 2004 Jul 17; 45(7):2447-56. PubMed ID: 15223829
    [Abstract] [Full Text] [Related]

  • 32. Cone-rod dependence in the rat retina: variation with the rate of rod damage.
    Chrysostomou V, Valter K, Stone J.
    Invest Ophthalmol Vis Sci; 2009 Jun 17; 50(6):3017-23. PubMed ID: 19182251
    [Abstract] [Full Text] [Related]

  • 33. Age-related changes in retinal sensitivity, rhodopsin content and rod outer segment length in hooded rats following low-level lead exposure during development.
    Fox DA, Rubinstein SD.
    Exp Eye Res; 1989 Feb 17; 48(2):237-49. PubMed ID: 2924811
    [Abstract] [Full Text] [Related]

  • 34. Dark-adapted sensitivity, rhodopsin content, and background adaptation in pcd/pcd mice.
    Fulton AB, Manning KA, Baker BN, Schukar SE, Bailey CJ.
    Invest Ophthalmol Vis Sci; 1982 Mar 17; 22(3):386-93. PubMed ID: 7061210
    [Abstract] [Full Text] [Related]

  • 35. Enhanced cone dysfunction in rats homozygous for the P23H rhodopsin mutation.
    Pinilla I, Lund RD, Sauvé Y.
    Neurosci Lett; 1982 Mar 17; 382(1-2):16-21. PubMed ID: 15911114
    [Abstract] [Full Text] [Related]

  • 36. In vivo studies of signaling in rod pathways of the mouse using the electroretinogram.
    Robson JG, Maeda H, Saszik SM, Frishman LJ.
    Vision Res; 2004 Dec 17; 44(28):3253-68. PubMed ID: 15535993
    [Abstract] [Full Text] [Related]

  • 37. Contribution of proximal retinal neurons to b- and d-waves of frog electroretinogram under different conditions of light adaptation.
    Popova E, Kupenova P.
    Vision Res; 2009 Jul 17; 49(15):2001-10. PubMed ID: 19463849
    [Abstract] [Full Text] [Related]

  • 38. The relation of retinal sensitivity and rhodopsin in developing rat retina.
    Fulton AB, Baker BN.
    Invest Ophthalmol Vis Sci; 1984 Jun 17; 25(6):647-51. PubMed ID: 6724834
    [Abstract] [Full Text] [Related]

  • 39. The retina of c-fos-/- mice: electrophysiologic, morphologic and biochemical aspects.
    Kueng-Hitz N, Grimm C, Lansel N, Hafezi F, He L, Fox DA, Remé CE, Niemeyer G, Wenzel A.
    Invest Ophthalmol Vis Sci; 2000 Mar 17; 41(3):909-16. PubMed ID: 10711713
    [Abstract] [Full Text] [Related]

  • 40. Retinal light damage in rats with altered levels of rod outer segment docosahexaenoate.
    Organisciak DT, Darrow RM, Jiang YL, Blanks JC.
    Invest Ophthalmol Vis Sci; 1996 Oct 17; 37(11):2243-57. PubMed ID: 8843911
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.