These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
120 related items for PubMed ID: 7733679
1. Mutagenesis of an amino acid residue in the activator-binding site of cyanobacterial ADP-glucose pyrophosphorylase causes alteration in activator specificity. Charng YY, Sheng J, Preiss J. Arch Biochem Biophys; 1995 Apr 20; 318(2):476-80. PubMed ID: 7733679 [Abstract] [Full Text] [Related]
2. Site-directed mutagenesis of lysine382, the activator-binding site, of ADP-glucose pyrophosphorylase from Anabaena PCC 7120. Sheng J, Charng YY, Preiss J. Biochemistry; 1996 Mar 05; 35(9):3115-21. PubMed ID: 8608152 [Abstract] [Full Text] [Related]
3. Arginine294 is essential for the inhibition of Anabaena PCC 7120 ADP-glucose pyrophosphorylase by phosphate. Sheng J, Preiss J. Biochemistry; 1997 Oct 21; 36(42):13077-84. PubMed ID: 9335570 [Abstract] [Full Text] [Related]
4. Site-directed mutagenesis of a regulatory site of Escherichia coli ADP-glucose pyrophosphorylase: the role of residue 336 in allosteric behavior. Meyer CR, Bork JA, Nadler S, Yirsa J, Preiss J. Arch Biochem Biophys; 1998 May 01; 353(1):152-9. PubMed ID: 9578610 [Abstract] [Full Text] [Related]
5. Structure-function relationships of cyanobacterial ADP-glucose pyrophosphorylase. Site-directed mutagenesis and chemical modification of the activator-binding sites of ADP-glucose pyrophosphorylase from Anabaena PCC 7120. Charng YY, Iglesias AA, Preiss J. J Biol Chem; 1994 Sep 30; 269(39):24107-13. PubMed ID: 7929064 [Abstract] [Full Text] [Related]
6. A kinetic study of site-directed mutants of Escherichia coli ADP-glucose pyrophosphorylase: the role of residue 295 in allosteric regulation. Meyer CR, Yirsa J, Gott B, Preiss J. Arch Biochem Biophys; 1998 Apr 15; 352(2):247-54. PubMed ID: 9587413 [Abstract] [Full Text] [Related]
7. Alteration of inhibitor selectivity by site-directed mutagenesis of Arg(294) in the ADP-glucose pyrophosphorylase from Anabaena PCC 7120. Frueauf JB, Ballicora MA, Preiss J. Arch Biochem Biophys; 2002 Apr 15; 400(2):208-14. PubMed ID: 12054431 [Abstract] [Full Text] [Related]
8. Understanding the allosteric trigger for the fructose-1,6-bisphosphate regulation of the ADP-glucose pyrophosphorylase from Escherichia coli. Figueroa CM, Esper MC, Bertolo A, Demonte AM, Aleanzi M, Iglesias AA, Ballicora MA. Biochimie; 2011 Oct 15; 93(10):1816-23. PubMed ID: 21741429 [Abstract] [Full Text] [Related]
9. Functional analysis of conserved histidines in ADP-glucose pyrophosphorylase from Escherichia coli. Hill MA, Preiss J. Biochem Biophys Res Commun; 1998 Mar 17; 244(2):573-7. PubMed ID: 9514953 [Abstract] [Full Text] [Related]
10. The N-terminal region is important for the allosteric activation and inhibition of the Escherichia coli ADP-glucose pyrophosphorylase. Wu MX, Preiss J. Arch Biochem Biophys; 1998 Oct 01; 358(1):182-8. PubMed ID: 9750179 [Abstract] [Full Text] [Related]
11. Truncated forms of the recombinant Escherichia coli ADP-glucose pyrophosphorylase: the importance of the N-terminal region for allosteric activation and inhibition. Wu MX, Preiss J. Arch Biochem Biophys; 2001 May 15; 389(2):159-65. PubMed ID: 11339804 [Abstract] [Full Text] [Related]
12. Cloning, expression, and sequence of an allosteric mutant ADPglucose pyrophosphorylase from Escherichia coli B. Meyer CR, Ghosh P, Nadler S, Preiss J. Arch Biochem Biophys; 1993 Apr 15; 302(1):64-71. PubMed ID: 8385906 [Abstract] [Full Text] [Related]
13. Domain swapping between a cyanobacterial and a plant subunit ADP-glucose pyrophosphorylase. Iglesias AA, Ballicora MA, Sesma JI, Preiss J. Plant Cell Physiol; 2006 Apr 15; 47(4):523-30. PubMed ID: 16501256 [Abstract] [Full Text] [Related]
14. Estimation of binding constants for the substrate and activator of Rhodobacter sphaeroides adenosine 5'-diphosphate-glucose pyrophosphorylase using affinity capillary electrophoresis. Kaddis J, Zurita C, Moran J, Borra M, Polder N, Meyer CR, Gomez FA. Anal Biochem; 2004 Apr 15; 327(2):252-60. PubMed ID: 15051543 [Abstract] [Full Text] [Related]
15. The ADP-glucose pyrophosphorylase from Escherichia coli comprises two tightly bound distinct domains. Bejar CM, Ballicora MA, Gómez-Casati DF, Iglesias AA, Preiss J. FEBS Lett; 2004 Aug 27; 573(1-3):99-104. PubMed ID: 15327982 [Abstract] [Full Text] [Related]
16. Studies on the effect of temperature on the activity and stability of cyanobacterial ADP-glucose pyrophosphorylase. Gómez-Casati DF, Preiss J, Iglesias AA. Arch Biochem Biophys; 2000 Dec 15; 384(2):319-26. PubMed ID: 11368319 [Abstract] [Full Text] [Related]
17. Probing the kinetic mechanism and coenzyme specificity of glutathione reductase from the cyanobacterium Anabaena PCC 7120 by redesign of the pyridine-nucleotide-binding site. Danielson UH, Jiang F, Hansson LO, Mannervik B. Biochemistry; 1999 Jul 20; 38(29):9254-63. PubMed ID: 10413499 [Abstract] [Full Text] [Related]
18. Biosynthesis of bacterial glycogen. Kinetic studies of a glucose-1-phosphate adenylyltransferase (EC 2.7.7.27) from a glycogen-deficient mutant of Escherichia coli B. Preiss J, Greenberg E, Sabraw A. J Biol Chem; 1975 Oct 10; 250(19):7631-8. PubMed ID: 240834 [Abstract] [Full Text] [Related]
19. Biosynthesis of bacterial glycogen. Mutagenesis of a catalytic site residue of ADP-glucose pyrophosphorylase from Escherichia coli. Hill MA, Kaufmann K, Otero J, Preiss J. J Biol Chem; 1991 Jul 05; 266(19):12455-60. PubMed ID: 1648099 [Abstract] [Full Text] [Related]
20. Conserved active site aspartates and domain-domain interactions in regulatory properties of the sugar kinase superfamily. Pettigrew DW, Smith GB, Thomas KP, Dodds DC. Arch Biochem Biophys; 1998 Jan 15; 349(2):236-45. PubMed ID: 9448710 [Abstract] [Full Text] [Related] Page: [Next] [New Search]