These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
226 related items for PubMed ID: 7737173
1. Site-directed mutagenesis of the redox-active cysteines of Trypanosoma cruzi trypanothione reductase. Borges A, Cunningham ML, Tovar J, Fairlamb AH. Eur J Biochem; 1995 Mar 15; 228(3):745-52. PubMed ID: 7737173 [Abstract] [Full Text] [Related]
2. Trypanothione reductase from Trypanosoma cruzi. Purification and characterization of the crystalline enzyme. Krauth-Siegel RL, Enders B, Henderson GB, Fairlamb AH, Schirmer RH. Eur J Biochem; 1987 Apr 01; 164(1):123-8. PubMed ID: 3549299 [Abstract] [Full Text] [Related]
3. Redox enzyme engineering: conversion of human glutathione reductase into a trypanothione reductase. Bradley M, Bücheler US, Walsh CT. Biochemistry; 1991 Jun 25; 30(25):6124-7. PubMed ID: 2059620 [Abstract] [Full Text] [Related]
4. Glutathione reductase turned into trypanothione reductase: structural analysis of an engineered change in substrate specificity. Stoll VS, Simpson SJ, Krauth-Siegel RL, Walsh CT, Pai EF. Biochemistry; 1997 May 27; 36(21):6437-47. PubMed ID: 9174360 [Abstract] [Full Text] [Related]
5. Catalytic and potentiometric characterization of E201D and E201Q mutants of Trypanosoma congolense trypanothione reductase. Zheng R, Cenas N, Blanchard JS. Biochemistry; 1995 Oct 03; 34(39):12697-703. PubMed ID: 7548022 [Abstract] [Full Text] [Related]
6. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O, Scrutton NS, Munro AW. Biochemistry; 2003 Sep 16; 42(36):10809-21. PubMed ID: 12962506 [Abstract] [Full Text] [Related]
7. Cloning, sequencing, overproduction and purification of trypanothione reductase from Trypanosoma cruzi. Sullivan FX, Walsh CT. Mol Biochem Parasitol; 1991 Jan 16; 44(1):145-7. PubMed ID: 2011150 [No Abstract] [Full Text] [Related]
8. Role of cysteine 337 and cysteine 340 in flavoprotein that functions as NADH oxidase from Amphibacillus xylanus studied by site-directed mutagenesis. Ohnishi K, Niimura Y, Hidaka M, Masaki H, Suzuki H, Uozumi T, Nishino T. J Biol Chem; 1995 Mar 17; 270(11):5812-7. PubMed ID: 7726998 [Abstract] [Full Text] [Related]
9. Directed mutagenesis of the redox-active disulphide bridge in glutathione reductase from Escherichia coli. Deonarain MP, Scrutton NS, Berry A, Perham RN. Proc Biol Sci; 1990 Sep 22; 241(1302):179-86. PubMed ID: 1979442 [Abstract] [Full Text] [Related]
10. The role of cysteine residues of spinach ferredoxin-NADP+ reductase As assessed by site-directed mutagenesis. Aliverti A, Piubelli L, Zanetti G, Lübberstedt T, Herrmann RG, Curti B. Biochemistry; 1993 Jun 29; 32(25):6374-80. PubMed ID: 8518283 [Abstract] [Full Text] [Related]
11. Mutational analysis of parasite trypanothione reductase: acquisition of glutathione reductase activity in a triple mutant. Sullivan FX, Sobolov SB, Bradley M, Walsh CT. Biochemistry; 1991 Mar 19; 30(11):2761-7. PubMed ID: 2007114 [Abstract] [Full Text] [Related]
12. Trypanothione reductase from Leishmania donovani. Purification, characterisation and inhibition by trivalent antimonials. Cunningham ML, Fairlamb AH. Eur J Biochem; 1995 Jun 01; 230(2):460-8. PubMed ID: 7607216 [Abstract] [Full Text] [Related]
13. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes. Rosenbaum K, Jahnke K, Curti B, Hagen WR, Schnackerz KD, Vanoni MA. Biochemistry; 1998 Dec 15; 37(50):17598-609. PubMed ID: 9860876 [Abstract] [Full Text] [Related]
14. Phenotype of recombinant Leishmania donovani and Trypanosoma cruzi which over-express trypanothione reductase. Sensitivity towards agents that are thought to induce oxidative stress. Kelly JM, Taylor MC, Smith K, Hunter KJ, Fairlamb AH. Eur J Biochem; 1993 Nov 15; 218(1):29-37. PubMed ID: 8243474 [Abstract] [Full Text] [Related]
15. Comparative structural, kinetic and inhibitor studies of Trypanosoma brucei trypanothione reductase with T. cruzi. Jones DC, Ariza A, Chow WH, Oza SL, Fairlamb AH. Mol Biochem Parasitol; 2010 Jan 15; 169(1):12-9. PubMed ID: 19747949 [Abstract] [Full Text] [Related]
16. "Subversive" substrates for the enzyme trypanothione disulfide reductase: alternative approach to chemotherapy of Chagas disease. Henderson GB, Ulrich P, Fairlamb AH, Rosenberg I, Pereira M, Sela M, Cerami A. Proc Natl Acad Sci U S A; 1988 Aug 15; 85(15):5374-8. PubMed ID: 3135548 [Abstract] [Full Text] [Related]
17. Expression of Trypanosoma congolense trypanothione reductase in Escherichia coli: overproduction, purification, and characterization. Sullivan FX, Shames SL, Walsh CT. Biochemistry; 1989 Jun 13; 28(12):4986-92. PubMed ID: 2669965 [Abstract] [Full Text] [Related]
18. Mechanistic studies on CDP-6-deoxy-delta 3,4-glucoseen reductase: the role of cysteine residues in catalysis as probed by chemical modification and site-directed mutagenesis. Ploux O, Lei Y, Vatanen K, Liu HW. Biochemistry; 1995 Apr 04; 34(13):4159-68. PubMed ID: 7703227 [Abstract] [Full Text] [Related]
19. Trypanothione reductase from Trypanosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds. Jockers-Scherübl MC, Schirmer RH, Krauth-Siegel RL. Eur J Biochem; 1989 Mar 15; 180(2):267-72. PubMed ID: 2647489 [Abstract] [Full Text] [Related]
20. Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase: a template for drug design. Saravanamuthu A, Vickers TJ, Bond CS, Peterson MR, Hunter WN, Fairlamb AH. J Biol Chem; 2004 Jul 09; 279(28):29493-500. PubMed ID: 15102853 [Abstract] [Full Text] [Related] Page: [Next] [New Search]