These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
147 related items for PubMed ID: 7744845
1. Thapsigargin-resistant intracellular calcium pumps. Role in calcium pool function and growth of thapsigargin-resistant cells. Waldron RT, Short AD, Gill DL. J Biol Chem; 1995 May 19; 270(20):11955-61. PubMed ID: 7744845 [Abstract] [Full Text] [Related]
2. Store-operated Ca2+ entry and coupling to Ca2+ pool depletion in thapsigargin-resistant cells. Waldron RT, Short AD, Gill DL. J Biol Chem; 1997 Mar 07; 272(10):6440-7. PubMed ID: 9045668 [Abstract] [Full Text] [Related]
3. Identification of intracellular calcium pools. Selective modification by thapsigargin. Bian JH, Ghosh TK, Wang JC, Gill DL. J Biol Chem; 1991 May 15; 266(14):8801-6. PubMed ID: 1827436 [Abstract] [Full Text] [Related]
4. Endoplasmic reticulum calcium pump expression and control of cell growth. Waldron RT, Short AD, Meadows JJ, Ghosh TK, Gill DL. J Biol Chem; 1994 Apr 22; 269(16):11927-33. PubMed ID: 8163492 [Abstract] [Full Text] [Related]
5. Characterization of two different Ca2+ uptake and IP3-sensitive Ca2+ release mechanisms in microsomal Ca2+ pools of rat pancreatic acinar cells. Ozawa T, Thévenod F, Schulz I. J Membr Biol; 1995 Mar 22; 144(2):111-20. PubMed ID: 7595944 [Abstract] [Full Text] [Related]
6. A novel Ca2+ entry mechanism is turned on during growth arrest induced by Ca2+ pool depletion. Ufret-Vincenty CA, Short AD, Alfonso A, Gill DL. J Biol Chem; 1995 Nov 10; 270(45):26790-3. PubMed ID: 7592918 [Abstract] [Full Text] [Related]
7. Functional identification and quantitation of three intracellular calcium pools in GH4C1 cells: evidence that the caffeine-responsive pool is coupled to a thapsigargin-resistant, ATP-dependent process. Tanaka Y, Tashjian AH. Biochemistry; 1993 Nov 16; 32(45):12062-73. PubMed ID: 8218284 [Abstract] [Full Text] [Related]
8. Persistent intracellular calcium pool depletion by thapsigargin and its influence on cell growth. Ghosh TK, Bian JH, Short AD, Rybak SL, Gill DL. J Biol Chem; 1991 Dec 25; 266(36):24690-7. PubMed ID: 1761564 [Abstract] [Full Text] [Related]
9. Ca2+ release from platelet intracellular stores by thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone: relationship to Ca2+ pools and relevance in platelet activation. Authi KS, Bokkala S, Patel Y, Kakkar VV, Munkonge F. Biochem J; 1993 Aug 15; 294 ( Pt 1)(Pt 1):119-26. PubMed ID: 8363562 [Abstract] [Full Text] [Related]
10. Ruthenium red selectively depletes inositol 1,4,5-trisphosphate-sensitive calcium stores in permeabilized rabbit pancreatic acinar cells. van de Put FH, Hoenderop JG, De Pont JJ, Willems PH. J Membr Biol; 1993 Aug 15; 135(2):153-63. PubMed ID: 7692065 [Abstract] [Full Text] [Related]
11. Direct involvement of intracellular Ca2+ transport ATPase in the development of thapsigargin resistance by Chinese hamster lung fibroblasts. Hussain A, Garnett C, Klein MG, Tsai-Wu JJ, Schneider MF, Inesi G. J Biol Chem; 1995 May 19; 270(20):12140-6. PubMed ID: 7744863 [Abstract] [Full Text] [Related]
12. Uptake characteristics of the InsP3-sensitive and -insensitive Ca2+ pools in porcine aortic smooth-muscle cells: different Ca2+ sensitivity of the Ca2(+)-uptake mechanism. Missiaen L, De Smedt H, Droogmans G, Declerck I, Plessers L, Casteels R. Biochem Biophys Res Commun; 1991 Feb 14; 174(3):1183-8. PubMed ID: 1825465 [Abstract] [Full Text] [Related]
13. Inhibition of L-type calcium-channel activity by thapsigargin and 2,5-t-butylhydroquinone, but not by cyclopiazonic acid. Nelson EJ, Li CC, Bangalore R, Benson T, Kass RS, Hinkle PM. Biochem J; 1994 Aug 15; 302 ( Pt 1)(Pt 1):147-54. PubMed ID: 7520693 [Abstract] [Full Text] [Related]
14. Thapsigargin-sensitive Ca(2+)-ATPases account for Ca2+ uptake to inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive Ca2+ stores in adrenal chromaffin cells. Poulsen JC, Caspersen C, Mathiasen D, East JM, Tunwell RE, Lai FA, Maeda N, Mikoshiba K, Treiman M. Biochem J; 1995 May 01; 307 ( Pt 3)(Pt 3):749-58. PubMed ID: 7741706 [Abstract] [Full Text] [Related]
15. Calcium entry into the inositol 1,4,5-trisphosphate-releasable calcium pool is mediated by a GTP-regulatory mechanism. Mullaney JM, Yu M, Ghosh TK, Gill DL. Proc Natl Acad Sci U S A; 1988 Apr 01; 85(8):2499-503. PubMed ID: 3357878 [Abstract] [Full Text] [Related]
16. Intracellular Ca2+ pool content is linked to control of cell growth. Short AD, Bian J, Ghosh TK, Waldron RT, Rybak SL, Gill DL. Proc Natl Acad Sci U S A; 1993 Jun 01; 90(11):4986-90. PubMed ID: 8389460 [Abstract] [Full Text] [Related]
17. Sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) inhibitors identify a novel calcium pool in the central nervous system. Watson WD, Facchina SL, Grimaldi M, Verma A. J Neurochem; 2003 Oct 01; 87(1):30-43. PubMed ID: 12969250 [Abstract] [Full Text] [Related]
19. Antigen and thapsigargin promote influx of Ca2+ in rat basophilic RBL-2H3 cells by ostensibly similar mechanisms that allow filling of inositol 1,4,5-trisphosphate-sensitive and mitochondrial Ca2+ stores. Ali H, Maeyama K, Sagi-Eisenberg R, Beaven MA. Biochem J; 1994 Dec 01; 304 ( Pt 2)(Pt 2):431-40. PubMed ID: 7998977 [Abstract] [Full Text] [Related]
20. Intracellular Ca2+ signals induced by ATP and thapsigargin in glioma C6 cells. Calcium pools sensitive to inositol 1,4,5-trisphosphate and thapsigargin. Sabała P, Amler E, Barańska J. Neurochem Int; 1997 Jul 01; 31(1):55-64. PubMed ID: 9185165 [Abstract] [Full Text] [Related] Page: [Next] [New Search]