These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
314 related items for PubMed ID: 7744859
1. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ. J Biol Chem; 1995 May 19; 270(20):12109-16. PubMed ID: 7744859 [Abstract] [Full Text] [Related]
2. Changes in Skeletal Muscle and Body Weight on Sleeping Beauty Transposon-Mediated Transgenic Mice Overexpressing Pig mIGF-1. Gao B, Wang W, Wu H, Chen C, Shen D, Wang S, Chen W, Zhang L, Chan S, Song C. Biochem Genet; 2018 Aug 19; 56(4):341-355. PubMed ID: 29470680 [Abstract] [Full Text] [Related]
3. Overexpression of insulin-like growth factor-binding protein-4 (IGFBP-4) in smooth muscle cells of transgenic mice through a smooth muscle alpha-actin-IGFBP-4 fusion gene induces smooth muscle hypoplasia. Wang J, Niu W, Witte DP, Chernausek SD, Nikiforov YE, Clemens TL, Sharifi B, Strauch AR, Fagin JA. Endocrinology; 1998 May 19; 139(5):2605-14. PubMed ID: 9564877 [Abstract] [Full Text] [Related]
4. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts. Ito A, Yamamoto M, Ikeda K, Sato M, Kawabe Y, Kamihira M. J Biosci Bioeng; 2015 May 19; 119(5):596-603. PubMed ID: 25454061 [Abstract] [Full Text] [Related]
5. Insulin-like growth factor (IGF-I) induces myotube hypertrophy associated with an increase in anaerobic glycolysis in a clonal skeletal-muscle cell model. Semsarian C, Sutrave P, Richmond DR, Graham RM. Biochem J; 1999 Apr 15; 339 ( Pt 2)(Pt 2):443-51. PubMed ID: 10191278 [Abstract] [Full Text] [Related]
6. A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo. Shavlakadze T, Chai J, Maley K, Cozens G, Grounds G, Winn N, Rosenthal N, Grounds MD. J Cell Sci; 2010 Mar 15; 123(Pt 6):960-71. PubMed ID: 20179101 [Abstract] [Full Text] [Related]
7. Ectopic insulin-like growth factor I expression in avian skeletal muscle prevents expression of CMD4, a novel inhibitor of differentiation. Winner DG, Ealy AD, Hannon K, Johnson SE. Domest Anim Endocrinol; 2006 Nov 15; 31(4):312-26. PubMed ID: 16423499 [Abstract] [Full Text] [Related]
8. Rskalpha-actin/hIGF-1 transgenic mice with increased IGF-I in skeletal muscle and blood: impact on regeneration, denervation and muscular dystrophy. Shavlakadze T, Boswell JM, Burt DW, Asante EA, Tomas FM, Davies MJ, White JD, Grounds MD, Goddard C. Growth Horm IGF Res; 2006 Jun 15; 16(3):157-73. PubMed ID: 16716629 [Abstract] [Full Text] [Related]
9. Insulin-like growth factor-induced transcriptional activity of the skeletal alpha-actin gene is regulated by signaling mechanisms linked to voltage-gated calcium channels during myoblast differentiation. Spangenburg EE, Bowles DK, Booth FW. Endocrinology; 2004 Apr 15; 145(4):2054-63. PubMed ID: 14684598 [Abstract] [Full Text] [Related]
10. Smooth muscle alpha-actin gene requires two E-boxes for proper expression in vivo and is a target of class I basic helix-loop-helix proteins. Kumar MS, Hendrix JA, Johnson AD, Owens GK. Circ Res; 2003 May 02; 92(8):840-7. PubMed ID: 12663487 [Abstract] [Full Text] [Related]
11. Specific, temporally regulated expression of the insulin-like growth factor II gene during muscle cell differentiation. Rosen KM, Wentworth BM, Rosenthal N, Villa-Komaroff L. Endocrinology; 1993 Aug 02; 133(2):474-81. PubMed ID: 8393762 [Abstract] [Full Text] [Related]
12. Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Ito H, Hiroe M, Hirata Y, Tsujino M, Adachi S, Shichiri M, Koike A, Nogami A, Marumo F. Circulation; 1993 May 02; 87(5):1715-21. PubMed ID: 7683979 [Abstract] [Full Text] [Related]
13. Proliferin, a prolactin/growth hormone-like peptide represses myogenic-specific transcription by the suppression of an essential serum response factor-like DNA-binding activity. Muscat GE, Gobius K, Emery J. Mol Endocrinol; 1991 Jun 02; 5(6):802-14. PubMed ID: 1656242 [Abstract] [Full Text] [Related]
14. Sodium fluoride induced skeletal muscle changes: Degradation of proteins and signaling mechanism. Shenoy PS, Sen U, Kapoor S, Ranade AV, Chowdhury CR, Bose B. Environ Pollut; 2019 Jan 02; 244():534-548. PubMed ID: 30384060 [Abstract] [Full Text] [Related]
15. Muscle-specific overexpression of the type 1 IGF receptor results in myoblast-independent muscle hypertrophy via PI3K, and not calcineurin, signaling. Quinn LS, Anderson BG, Plymate SR. Am J Physiol Endocrinol Metab; 2007 Dec 02; 293(6):E1538-51. PubMed ID: 17940216 [Abstract] [Full Text] [Related]
16. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. Witt R, Weigand A, Boos AM, Cai A, Dippold D, Boccaccini AR, Schubert DW, Hardt M, Lange C, Arkudas A, Horch RE, Beier JP. BMC Cell Biol; 2017 Feb 28; 18(1):15. PubMed ID: 28245809 [Abstract] [Full Text] [Related]
18. Overexpression of IGF-I in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy. Criswell DS, Booth FW, DeMayo F, Schwartz RJ, Gordon SE, Fiorotto ML. Am J Physiol; 1998 Sep 18; 275(3 Pt 1):E373-9. PubMed ID: 9725801 [Abstract] [Full Text] [Related]
19. The avian cardiac alpha-actin promoter is regulated through a pair of complex elements composed of E boxes and serum response elements that bind both positive- and negative-acting factors. Moss JB, McQuinn TC, Schwartz RJ. J Biol Chem; 1994 Apr 29; 269(17):12731-40. PubMed ID: 8175685 [Abstract] [Full Text] [Related]
20. Transcriptional activation of the insulin-like growth factor-II gene during myoblast differentiation. Kou K, Rotwein P. Mol Endocrinol; 1993 Feb 29; 7(2):291-302. PubMed ID: 8469241 [Abstract] [Full Text] [Related] Page: [Next] [New Search]