These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


356 related items for PubMed ID: 7752243

  • 1. Structural model of the phospholamban ion channel complex in phospholipid membranes.
    Arkin IT, Rothman M, Ludlam CF, Aimoto S, Engelman DM, Rothschild KJ, Smith SO.
    J Mol Biol; 1995 May 12; 248(4):824-34. PubMed ID: 7752243
    [Abstract] [Full Text] [Related]

  • 2. Helical structure of phospholamban in membrane bilayers.
    Smith SO, Kawakami T, Liu W, Ziliox M, Aimoto S.
    J Mol Biol; 2001 Nov 09; 313(5):1139-48. PubMed ID: 11700069
    [Abstract] [Full Text] [Related]

  • 3. Orientation in lipid bilayers of a synthetic peptide representing the C-terminus of the A1 domain of shiga toxin. A polarized ATR-FTIR study.
    Menikh A, Saleh MT, Gariépy J, Boggs JM.
    Biochemistry; 1997 Dec 16; 36(50):15865-72. PubMed ID: 9398319
    [Abstract] [Full Text] [Related]

  • 4. Structural changes in the cytoplasmic domain of phospholamban by phosphorylation at Ser16: a molecular dynamics study.
    Sugita Y, Miyashita N, Yoda T, Ikeguchi M, Toyoshima C.
    Biochemistry; 2006 Oct 03; 45(39):11752-61. PubMed ID: 17002276
    [Abstract] [Full Text] [Related]

  • 5. Use of a new label, (13)==(18)O, in the determination of a structural model of phospholamban in a lipid bilayer. Spatial restraints resolve the ambiguity arising from interpretations of mutagenesis data.
    Torres J, Adams PD, Arkin IT.
    J Mol Biol; 2000 Jul 21; 300(4):677-85. PubMed ID: 10891262
    [Abstract] [Full Text] [Related]

  • 6. The cytoplasmic domains of phospholamban and phospholemman associate with phospholipid membrane surfaces.
    Clayton JC, Hughes E, Middleton DA.
    Biochemistry; 2005 Dec 27; 44(51):17016-26. PubMed ID: 16363815
    [Abstract] [Full Text] [Related]

  • 7. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A, Bannister ML, Bell M, Boden N, Findlay JB, Hunter M, Knowles PF, Yang JC.
    Biochemistry; 1998 Jun 02; 37(22):8121-31. PubMed ID: 9609707
    [Abstract] [Full Text] [Related]

  • 8. Structure and dynamics of phospholamban in solution and in membrane bilayer: computer simulations.
    Houndonougbo Y, Kuczera K, Jas GS.
    Biochemistry; 2005 Feb 15; 44(6):1780-92. PubMed ID: 15697203
    [Abstract] [Full Text] [Related]

  • 9. Phosphorylation by cAMP-dependent protein kinase modulates the structural coupling between the transmembrane and cytosolic domains of phospholamban.
    Li J, Bigelow DJ, Squier TC.
    Biochemistry; 2003 Sep 16; 42(36):10674-82. PubMed ID: 12962492
    [Abstract] [Full Text] [Related]

  • 10. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation.
    Aggeli A, Boden N, Cheng YL, Findlay JB, Knowles PF, Kovatchev P, Turnbull PJ.
    Biochemistry; 1996 Dec 17; 35(50):16213-21. PubMed ID: 8973194
    [Abstract] [Full Text] [Related]

  • 11. A structural model of the complex formed by phospholamban and the calcium pump of sarcoplasmic reticulum obtained by molecular mechanics.
    Hutter MC, Krebs J, Meiler J, Griesinger C, Carafoli E, Helms V.
    Chembiochem; 2002 Dec 02; 3(12):1200-8. PubMed ID: 12465028
    [Abstract] [Full Text] [Related]

  • 12. Polarized ATR-FTIR spectroscopy of the membrane-embedded domains of the particulate methane monooxygenase.
    Vinchurkar MS, Chen KH, Yu SS, Kuo SJ, Chiu HC, Chien SH, Chan SI.
    Biochemistry; 2004 Oct 26; 43(42):13283-92. PubMed ID: 15491135
    [Abstract] [Full Text] [Related]

  • 13. A leucine zipper-like sequence from the cytoplasmic tail of the HIV-1 envelope glycoprotein binds and perturbs lipid bilayers.
    Kliger Y, Shai Y.
    Biochemistry; 1997 Apr 29; 36(17):5157-69. PubMed ID: 9136877
    [Abstract] [Full Text] [Related]

  • 14. Solid-state NMR measurements of the kinetics of the interaction between phospholamban and Ca2+-ATPase in lipid bilayers.
    Hughes E, Middleton DA.
    Mol Membr Biol; 2005 Apr 29; 22(4):353-61. PubMed ID: 16154906
    [Abstract] [Full Text] [Related]

  • 15. Secondary structure and orientation of phospholamban reconstituted in supported bilayers from polarized attenuated total reflection FTIR spectroscopy.
    Tatulian SA, Jones LR, Reddy LG, Stokes DL, Tamm LK.
    Biochemistry; 1995 Apr 04; 34(13):4448-56. PubMed ID: 7703259
    [Abstract] [Full Text] [Related]

  • 16. Structure and function of integral membrane protein domains resolved by peptide-amphiphiles: application to phospholamban.
    Lockwood NA, Tu RS, Zhang Z, Tirrell MV, Thomas DD, Karim CB.
    Biopolymers; 2003 Jul 04; 69(3):283-92. PubMed ID: 12833255
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban.
    Ludlam CF, Arkin IT, Liu XM, Rothman MS, Rath P, Aimoto S, Smith SO, Engelman DM, Rothschild KJ.
    Biophys J; 1996 Apr 04; 70(4):1728-36. PubMed ID: 8785331
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Multiple site-specific infrared dichroism of CD3-zeta, a transmembrane helix bundle.
    Torres J, Briggs JA, Arkin IT.
    J Mol Biol; 2002 Feb 15; 316(2):365-74. PubMed ID: 11851344
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.