These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
108 related items for PubMed ID: 7758546
21. Salivary gland-specific gene expression in the malaria vector Anopheles gambiae. Arcà B, Lombardo F, Capurro M, della Torre A, Spanos L, Dimopoulos G, Louis C, James AA, Coluzzi M. Parassitologia; 1999 Sep; 41(1-3):483-7. PubMed ID: 10697906 [Abstract] [Full Text] [Related]
22. Molecular cloning and chromosomal localization of a prophenoloxidase cDNA from the malaria vector Anopheles gambiae. Lee WJ, Ahmed A, della Torre A, Kobayashi A, Ashida M, Brey PT. Insect Mol Biol; 1998 Feb; 7(1):41-50. PubMed ID: 9459428 [Abstract] [Full Text] [Related]
23. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. Dimopoulos G, Seeley D, Wolf A, Kafatos FC. EMBO J; 1998 Nov 02; 17(21):6115-23. PubMed ID: 9799221 [Abstract] [Full Text] [Related]
24. Plasmodium infection-induced changes in salivary gland proteins of malaria vector Anopheles stephensi (Diptera:Culicidae). Shandilya H, Gakhar SK, Adak T. Jpn J Infect Dis; 1999 Oct 02; 52(5):214-6. PubMed ID: 10680088 [Abstract] [Full Text] [Related]
25. Genetic study of the susceptibility of Anopheles gambiae to infection with malaria parasites. Collins FH. Parassitologia; 1993 Jul 02; 35 Suppl():19-21. PubMed ID: 8233605 [No Abstract] [Full Text] [Related]
26. Lactate dehydrogenase as a marker of Plasmodium infection in malaria vector Anopheles. Riandey MF, Sannier C, Peltre G, Monteny N, Cavaleyra M. J Am Mosq Control Assoc; 1996 Jun 02; 12(2 Pt 1):194-8. PubMed ID: 8827592 [Abstract] [Full Text] [Related]
27. Identification and characterization of a new putative c-type lysozyme from malaria vector Anopheles stephensi. Dixit R, Dixit S, Gakhar S. Indian J Biochem Biophys; 2006 Feb 02; 43(1):15-9. PubMed ID: 16955746 [Abstract] [Full Text] [Related]
28. Plasmodium gallinaceum: a novel morphology of malaria ookinetes in the midgut of the mosquito vector. Vernick KD, Fujioka H, Aikawa M. Exp Parasitol; 1999 Apr 02; 91(4):362-6. PubMed ID: 10092481 [Abstract] [Full Text] [Related]
29. SAGE analysis of mosquito salivary gland transcriptomes during Plasmodium invasion. Rosinski-Chupin I, Briolay J, Brouilly P, Perrot S, Gomez SM, Chertemps T, Roth CW, Keime C, Gandrillon O, Couble P, Brey PT. Cell Microbiol; 2007 Mar 02; 9(3):708-24. PubMed ID: 17054438 [Abstract] [Full Text] [Related]
30. Proteolytic enzyme activity and Plasmodium falciparum sporogonic development in three species of Anopheles mosquitoes. Chege GM, Pumpuni CB, Beier JC. J Parasitol; 1996 Feb 02; 82(1):11-6. PubMed ID: 8627478 [Abstract] [Full Text] [Related]
31. [Effect of anti-mosquito-midgut antibodies on the development of oocysts of Plasmodium yoelii in Anopheles stephensi]. Wei QF, Gao XZ. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2000 Feb 02; 18(4):197-9. PubMed ID: 12567656 [Abstract] [Full Text] [Related]
32. Blocking of malaria parasite development in mosquito and fecundity reduction by midgut antibodies in Anopheles stephensi (Diptera: Culicidae). Suneja A, Gulia M, Gakhar SK. Arch Insect Biochem Physiol; 2003 Feb 02; 52(2):63-70. PubMed ID: 12529861 [Abstract] [Full Text] [Related]
33. Plasmodium vivax: a monoclonal antibody recognizes a circumsporozoite protein precursor on the sporozoite surface. Gonzalez-Ceron L, Rodriguez MH, Wirtz RA, Sina BJ, Palomeque OL, Nettel JA, Tsutsumi V. Exp Parasitol; 1998 Nov 02; 90(3):203-11. PubMed ID: 9806864 [Abstract] [Full Text] [Related]
34. Close association of invading Plasmodium berghei and beta integrin in the Anopheles gambiae midgut. Mahairaki V, Lycett G, Sidén-Kiamos I, Sinden RE, Louis C. Arch Insect Biochem Physiol; 2005 Sep 02; 60(1):13-9. PubMed ID: 16116619 [Abstract] [Full Text] [Related]
35. Genetics in the study of mosquito susceptibility to Plasmodium. Collins FH, Saunders RD, Kafatos FC, Roth C, Ke Z, Wang X, Dymbrowski K, Ton L, Hogan J. Parassitologia; 1999 Sep 02; 41(1-3):163-8. PubMed ID: 10697850 [Abstract] [Full Text] [Related]
36. An Anopheles gambiae salivary gland promoter analysis in Drosophila melanogaster and Anopheles stephensi. Lombardo F, Nolan T, Lycett G, Lanfrancotti A, Stich N, Catteruccia F, Louis C, Coluzzi M, Arcà B. Insect Mol Biol; 2005 Apr 02; 14(2):207-16. PubMed ID: 15796754 [Abstract] [Full Text] [Related]
37. Mosquito-Plasmodium interactions in response to immune activation of the vector. Lowenberger CA, Kamal S, Chiles J, Paskewitz S, Bulet P, Hoffmann JA, Christensen BM. Exp Parasitol; 1999 Jan 02; 91(1):59-69. PubMed ID: 9920043 [Abstract] [Full Text] [Related]
38. Getting infectious: formation and maturation of Plasmodium sporozoites in the Anopheles vector. Matuschewski K. Cell Microbiol; 2006 Oct 02; 8(10):1547-56. PubMed ID: 16984410 [Abstract] [Full Text] [Related]
39. Midgut specific immune response of vector mosquito Anopheles stephensi to malaria parasite Plasmodium. Gakhar SK, Shandilya HK. Indian J Exp Biol; 2001 Mar 02; 39(3):287-90. PubMed ID: 11495292 [Abstract] [Full Text] [Related]
40. A factor preventing melanization of sephadex CM C-25 beads in Plasmodium-susceptible and refractory anopheles gambiae. Paskewitz SM, Riehle M. Exp Parasitol; 1998 Sep 02; 90(1):34-41. PubMed ID: 9709028 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]