These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 7760383

  • 1. Role for ATP-sensitive K+ channel in the development of A-V block during hypoxia.
    Sawanobori T, Adaniya H, Yukisada H, Hiraoka M.
    J Mol Cell Cardiol; 1995 Jan; 27(1):647-57. PubMed ID: 7760383
    [Abstract] [Full Text] [Related]

  • 2. Endogenous adenosine does not activate ATP-sensitive potassium channels in the hypoxic guinea pig ventricle in vivo.
    Xu J, Wang L, Hurt CM, Pelleg A.
    Circulation; 1994 Mar; 89(3):1209-16. PubMed ID: 8124809
    [Abstract] [Full Text] [Related]

  • 3. Effects of ATP-sensitive K+ channel blockers on the action potential shortening in hypoxic and ischaemic myocardium.
    Nakaya H, Takeda Y, Tohse N, Kanno M.
    Br J Pharmacol; 1991 May; 103(1):1019-26. PubMed ID: 1908730
    [Abstract] [Full Text] [Related]

  • 4. Partial contribution of the ATP-sensitive K+ current to the effects of mild metabolic depression in rabbit myocardium.
    de Lorenzi F, Cai S, Schanne OF, Ruiz Petrich E.
    Mol Cell Biochem; 1994 Mar 30; 132(2):133-43. PubMed ID: 7969096
    [Abstract] [Full Text] [Related]

  • 5. Hypoxic vasodilatation in isolated, perfused guinea-pig heart: an analysis of the underlying mechanisms.
    von Beckerath N, Cyrys S, Dischner A, Daut J.
    J Physiol; 1991 Oct 30; 442():297-319. PubMed ID: 1798031
    [Abstract] [Full Text] [Related]

  • 6. Sulfonylureas, ATP-sensitive K+ channels, and cellular K+ loss during hypoxia, ischemia, and metabolic inhibition in mammalian ventricle.
    Venkatesh N, Lamp ST, Weiss JN.
    Circ Res; 1991 Sep 30; 69(3):623-37. PubMed ID: 1908355
    [Abstract] [Full Text] [Related]

  • 7. Actions of pinacidil at a reduced potassium concentration: a direct cardiac effect possibly involving the ATP-dependent potassium channel.
    Chi L, Black SC, Kuo PI, Fagbemi SO, Lucchesi BR.
    J Cardiovasc Pharmacol; 1993 Feb 30; 21(2):179-90. PubMed ID: 7679150
    [Abstract] [Full Text] [Related]

  • 8. Ischemic cardioprotection by ATP-sensitive K+ channels involves high-energy phosphate preservation.
    McPherson CD, Pierce GN, Cole WC.
    Am J Physiol; 1993 Nov 30; 265(5 Pt 2):H1809-18. PubMed ID: 8238595
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Influence of ATP-sensitive potassium channel modulators on ischemia-induced fibrillation in isolated rat hearts.
    Wolleben CD, Sanguinetti MC, Siegl PK.
    J Mol Cell Cardiol; 1989 Aug 30; 21(8):783-8. PubMed ID: 2506353
    [Abstract] [Full Text] [Related]

  • 11. Identification and properties of ATP-sensitive potassium channels in myocytes from rabbit Purkinje fibres.
    Light PE, Cordeiro JM, French RJ.
    Cardiovasc Res; 1999 Nov 30; 44(2):356-69. PubMed ID: 10690312
    [Abstract] [Full Text] [Related]

  • 12. Effect of adenosine on atrioventricular conduction. II: Modulation of atrioventricular node transmission by adenosine in hypoxic isolated guinea pig hearts.
    Clemo HF, Belardinelli L.
    Circ Res; 1986 Oct 30; 59(4):437-46. PubMed ID: 3791584
    [Abstract] [Full Text] [Related]

  • 13. Differential class III and glibenclamide effects on action potential duration in guinea-pig papillary muscle during normoxia and hypoxia/ischaemia.
    MacKenzie I, Saville VL, Waterfall JF.
    Br J Pharmacol; 1993 Oct 30; 110(2):531-8. PubMed ID: 8242227
    [Abstract] [Full Text] [Related]

  • 14. alpha 1-Adrenoceptor stimulation partially inhibits ATP-sensitive K+ current in guinea pig ventricular cells: attenuation of the action potential shortening induced by hypoxia and K+ channel openers.
    Takizawa T, Hara Y, Saito T, Masuda Y, Nakaya H.
    J Cardiovasc Pharmacol; 1996 Dec 30; 28(6):799-808. PubMed ID: 8961078
    [Abstract] [Full Text] [Related]

  • 15. Effects of high glucose on the hypoxic isolated guinea pig heart: interactions with ATP-dependent K+ channels?
    Gillessen S, Kammermeier H.
    Biochim Biophys Acta; 1999 Apr 19; 1427(2):256-64. PubMed ID: 10216242
    [Abstract] [Full Text] [Related]

  • 16. ATP gated potassium channels in acute myocardial hibernation and reperfusion.
    Offstad J, Kirkebøen KA, Ilebekk A, Downing SE.
    Cardiovasc Res; 1994 Jun 19; 28(6):872-80. PubMed ID: 7923294
    [Abstract] [Full Text] [Related]

  • 17. Effects of K+ channel blockers on the action potential of hypoxic rabbit myocardium.
    Ruiz Petrich E, Leblanc N, deLorenzi F, Allard Y, Schanne OF.
    Br J Pharmacol; 1992 Aug 19; 106(4):924-30. PubMed ID: 1393290
    [Abstract] [Full Text] [Related]

  • 18. Potassium channel openers attenuate atrioventricular block by bupivacaine in isolated hearts.
    Boban M, Stowe DF, Gross GJ, Pieper GM, Kampine JP, Bosnjak ZJ.
    Anesth Analg; 1993 Jun 19; 76(6):1259-65. PubMed ID: 8498663
    [Abstract] [Full Text] [Related]

  • 19. Potassium accumulation in the globally ischemic mammalian heart. A role for the ATP-sensitive potassium channel.
    Wilde AA, Escande D, Schumacher CA, Thuringer D, Mestre M, Fiolet JW, Janse MJ.
    Circ Res; 1990 Oct 19; 67(4):835-43. PubMed ID: 2119912
    [Abstract] [Full Text] [Related]

  • 20. Activation of ATP-sensitive potassium channels in hypoxic cardiac failure is not mediated by adenosine-1 receptors in the isolated rat heart.
    Reffelmann T, Skobel EC, Kammermeier H, Hanrath P, Schwarz ER.
    J Cardiovasc Pharmacol Ther; 2001 Apr 19; 6(2):189-200. PubMed ID: 11509926
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.