These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
123 related items for PubMed ID: 7765398
1. Phosphodiesterase and phosphotriesterase in Rhizobium and Bradyrhizobium strains and their roles in the degradation of organophosphorus pesticides. Abd-Alla MH. Lett Appl Microbiol; 1994 Oct; 19(4):240-3. PubMed ID: 7765398 [Abstract] [Full Text] [Related]
2. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Sogorb MA, Vilanova E. Toxicol Lett; 2002 Mar 10; 128(1-3):215-28. PubMed ID: 11869832 [Abstract] [Full Text] [Related]
3. Detoxification of pesticides by microbial enzymes. Johnson LM, Talbot HW. Experientia; 1983 Nov 15; 39(11):1236-46. PubMed ID: 6357841 [No Abstract] [Full Text] [Related]
4. Phosphotriesterase: an enzyme in search of its natural substrate. Raushel FM, Holden HM. Adv Enzymol Relat Areas Mol Biol; 2000 Nov 15; 74():51-93. PubMed ID: 10800593 [Abstract] [Full Text] [Related]
5. Characterization of P-S bond hydrolysis in organophosphorothioate pesticides by organophosphorus hydrolase. Lai K, Stolowich NJ, Wild JR. Arch Biochem Biophys; 1995 Apr 01; 318(1):59-64. PubMed ID: 7726573 [Abstract] [Full Text] [Related]
6. Isolation of a Pseudomonas monteilli strain with a novel phosphotriesterase. Horne I, Harcourt RL, Sutherland TD, Russell RJ, Oakeshott JG. FEMS Microbiol Lett; 2002 Jan 02; 206(1):51-5. PubMed ID: 11786256 [Abstract] [Full Text] [Related]
7. Enzymes of the beta-ketoadipate pathway are inducible in Rhizobium and Agrobacterium spp. and constitutive in Bradyrhizobium spp. Parke D, Ornston LN. J Bacteriol; 1986 Jan 02; 165(1):288-92. PubMed ID: 3941043 [Abstract] [Full Text] [Related]
8. Organophosphate-detoxicating enzymes in E. coli. Gelfiltration and isoelectric focusing of DFPase, paraoxonase and unspecific phosphohydrolases. Zech R, Wigand KD. Experientia; 1975 Feb 15; 31(2):157-8. PubMed ID: 234391 [No Abstract] [Full Text] [Related]
9. Improvement of enantioselectivity of chiral organophosphate insecticide hydrolysis by bacterial phosphotriesterase. Tsugawa W, Nakamura H, Sode K, Ohuchi S. Appl Biochem Biotechnol; 2000 Feb 15; 84-86():311-7. PubMed ID: 10849798 [Abstract] [Full Text] [Related]
10. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase. Hong SB, Raushel FM. Biochemistry; 1996 Aug 20; 35(33):10904-12. PubMed ID: 8718883 [Abstract] [Full Text] [Related]
11. Enzymatic degradation of organophosphorus insecticides decreases toxicity in planarians and enhances survival. Poirier L, Brun L, Jacquet P, Lepolard C, Armstrong N, Torre C, Daudé D, Ghigo E, Chabrière E. Sci Rep; 2017 Nov 09; 7(1):15194. PubMed ID: 29123147 [Abstract] [Full Text] [Related]
12. Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. McLoughlin SY, Jackson C, Liu JW, Ollis DL. Appl Environ Microbiol; 2004 Jan 09; 70(1):404-12. PubMed ID: 14711669 [Abstract] [Full Text] [Related]
13. Increased expression of a bacterial phosphotriesterase in Escherichia coli through directed evolution. McLoughlin SY, Jackson C, Liu JW, Ollis D. Protein Expr Purif; 2005 Jun 09; 41(2):433-40. PubMed ID: 15866732 [Abstract] [Full Text] [Related]
14. The classification of esterases which hydrolyse organophosphates: recent developments. Walker CH. Chem Biol Interact; 1993 Jun 09; 87(1-3):17-24. PubMed ID: 8393739 [Abstract] [Full Text] [Related]
15. Simultaneous degradation of organophosphorus pesticides and p-nitrophenol by a genetically engineered Moraxella sp. with surface-expressed organophosphorus hydrolase. Shimazu M, Mulchandani A, Chen W. Biotechnol Bioeng; 2001 Dec 09; 76(4):318-24. PubMed ID: 11745159 [Abstract] [Full Text] [Related]
16. Effects of zinc chloride on the hydrolysis of cyclic GMP and cyclic AMP by the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart. Donnelly TE. Biochim Biophys Acta; 1978 Jan 12; 522(1):151-60. PubMed ID: 202321 [Abstract] [Full Text] [Related]
17. Enhancement, relaxation, and reversal of the stereoselectivity for phosphotriesterase by rational evolution of active site residues. Chen-Goodspeed M, Sogorb MA, Wu F, Raushel FM. Biochemistry; 2001 Feb 06; 40(5):1332-9. PubMed ID: 11170460 [Abstract] [Full Text] [Related]
18. Structural determinants of the substrate and stereochemical specificity of phosphotriesterase. Chen-Goodspeed M, Sogorb MA, Wu F, Hong SB, Raushel FM. Biochemistry; 2001 Feb 06; 40(5):1325-31. PubMed ID: 11170459 [Abstract] [Full Text] [Related]
19. Purification and properties of the phosphotriesterase from Pseudomonas diminuta. Dumas DP, Caldwell SR, Wild JR, Raushel FM. J Biol Chem; 1989 Nov 25; 264(33):19659-65. PubMed ID: 2555328 [Abstract] [Full Text] [Related]
20. Enzymatic hydrolysis of bis-(4-nitrophenyl)phosphate and bis-(4-cyanophenyl)phosphate by rat tissues. Brandt E, Heymann E. Biochem Pharmacol; 1978 Mar 01; 27(5):773-7. PubMed ID: 26349 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]