These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
82 related items for PubMed ID: 7766862
1. Chronic exercise increases SNAP-25 abundance in fast-transported proteins of rat motoneurones. Kang CM, Lavoie PA, Gardiner PF. Neuroreport; 1995 Feb 15; 6(3):549-53. PubMed ID: 7766862 [Abstract] [Full Text] [Related]
2. Axonal transport of type III intermediate filament protein peripherin in intact and regenerating motor axons of the rat sciatic nerve. Chadan S, Le Gall JY, Di Giamberardino L, Filliatreau G. J Neurosci Res; 1994 Oct 01; 39(2):127-39. PubMed ID: 7530776 [Abstract] [Full Text] [Related]
5. Axonal transport of class II and III beta-tubulin: evidence that the slow component wave represents the movement of only a small fraction of the tubulin in mature motor axons. Hoffman PN, Lopata MA, Watson DF, Luduena RF. J Cell Biol; 1992 Nov 01; 119(3):595-604. PubMed ID: 1383234 [Abstract] [Full Text] [Related]
7. GAP 43-like immunoreactivity in normal adult rat sciatic nerve, spinal cord, and motoneurons: axonal transport and effect of spinal cord transection. Li JY, Kling-Petersen A, Dahlström A. Neuroscience; 1993 Dec 01; 57(3):759-76. PubMed ID: 8309535 [Abstract] [Full Text] [Related]
9. Treadmill training modifies KIF5B motor protein in the STZ-induced diabetic rat spinal cord and sciatic nerve. Rahmati M, Gharakhanlou R, Movahedin M, Mowla SJ, Khazani A, Fouladvand M, Jahani Golbar S. Arch Iran Med; 2015 Feb 01; 18(2):94-101. PubMed ID: 25644797 [Abstract] [Full Text] [Related]
10. Qualitative analysis of proteins rapidly transported in ventral horn motoneurons and bidirectionally from dorsal root ganglia. Stone GC, Wilson DL. J Neurobiol; 1979 Jan 01; 10(1):1-12. PubMed ID: 521808 [Abstract] [Full Text] [Related]
11. Sorting of regenerating rat sciatic nerve fibers with target-derived molecules. Jerregård H, Nyberg T, Hildebrand C. Exp Neurol; 2001 Jun 01; 169(2):298-306. PubMed ID: 11358443 [Abstract] [Full Text] [Related]
12. Conditioning nerve crush accelerates cytoskeletal protein transport in sprouts that form after a subsequent crush. McQuarrie IG, Jacob JM. J Comp Neurol; 1991 Mar 01; 305(1):139-47. PubMed ID: 1709646 [Abstract] [Full Text] [Related]
14. Acrylamide neuropathy: changes in the composition of proteins of fast axonal transport resemble those observed in regenerating axons. Bisby MA, Redshaw JD. J Neurochem; 1987 Mar 01; 48(3):924-8. PubMed ID: 2433402 [Abstract] [Full Text] [Related]
16. Differential axonal transport of soluble and insoluble tau in the rat sciatic nerve. Tashiro T, Sun X, Tsuda M, Komiya Y. J Neurochem; 1996 Oct 01; 67(4):1566-74. PubMed ID: 8858941 [Abstract] [Full Text] [Related]
17. Innervation and properties of the rat FDSBQ muscle: an animal model to evaluate voluntary muscle strength after incomplete spinal cord injury. Thomas CK, Esipenko V, Xu XM, Madsen PW, Gordon T. Exp Neurol; 1999 Aug 01; 158(2):279-89. PubMed ID: 10415136 [Abstract] [Full Text] [Related]
18. Reversal of axonal transport: similarity of proteins transported in anterograde and retrograde directions. Bisby MA. J Neurochem; 1981 Feb 01; 36(2):741-5. PubMed ID: 6162008 [Abstract] [Full Text] [Related]
19. Partial and complete sciatic nerve injuries induce similar increases of neuropeptide Y and vasoactive intestinal peptide immunoreactivities in primary sensory neurons and their central projections. Ma W, Bisby MA. Neuroscience; 1998 Oct 01; 86(4):1217-34. PubMed ID: 9697128 [Abstract] [Full Text] [Related]