These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


320 related items for PubMed ID: 7769385

  • 1. Reaction of the coordinate complexes of inositol hexaphosphate with first row transition series cations and Cd(II) with calf intestinal alkaline phosphatase.
    Martin CJ.
    J Inorg Biochem; 1995 May 01; 58(2):89-107. PubMed ID: 7769385
    [Abstract] [Full Text] [Related]

  • 2. Inactivation of intestinal alkaline phosphatase by inositol hexaphosphate-Cu (II) coordinate complexes.
    Martin CJ, Evans WJ.
    J Inorg Biochem; 1991 May 15; 42(3):161-75. PubMed ID: 1880498
    [Abstract] [Full Text] [Related]

  • 3. Reversible inhibition of intestinal alkaline phosphatase by inositol hexaphosphate and its Cu(II) coordinate complexes.
    Martin CJ, Evans WJ.
    J Inorg Biochem; 1991 May 15; 42(3):177-84. PubMed ID: 1880499
    [Abstract] [Full Text] [Related]

  • 4. Phytic acid-enhanced metal ion exchange reactions: the effect on carboxypeptidase A.
    Martin CJ, Evans WJ.
    J Inorg Biochem; 1989 Apr 15; 35(4):267-88. PubMed ID: 2496197
    [Abstract] [Full Text] [Related]

  • 5. Divalent metal derivatives of the hamster dihydroorotase domain.
    Huang DT, Thomas MA, Christopherson RI.
    Biochemistry; 1999 Aug 03; 38(31):9964-70. PubMed ID: 10433703
    [Abstract] [Full Text] [Related]

  • 6. [Influence of Zn++ and of Mg++ on alkaline phosphatase activity of different origins].
    Casey H, Zanobini A, Firenzuoli AM, Treves C, Bianchi A.
    Boll Soc Ital Biol Sper; 1980 Jan 30; 56(2):108-14. PubMed ID: 7002169
    [Abstract] [Full Text] [Related]

  • 7. Inositol hexaphosphate and its Cu(II) coordinate complex as inhibitors of intestinal alkaline phosphatase.
    Martin CJ, Evans WJ.
    Res Commun Chem Pathol Pharmacol; 1989 Sep 30; 65(3):289-96. PubMed ID: 2813956
    [Abstract] [Full Text] [Related]

  • 8. [Kinetics of inactivation of calf intestine alkaline phosphatase by EDTA with absorption spectrum method].
    Wang JY, Peng XJ, Yang D, An LJ, Hu JH, Zheng XF.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Oct 30; 21(5):701-3. PubMed ID: 12945337
    [Abstract] [Full Text] [Related]

  • 9. Metal ion interaction with urease and UreD-urease apoproteins.
    Park IS, Hausinger RP.
    Biochemistry; 1996 Apr 23; 35(16):5345-52. PubMed ID: 8611523
    [Abstract] [Full Text] [Related]

  • 10. Activation of DNA-hydrolyzing antibodies from the sera of autoimmune-prone MRL-lpr/lpr mice by different metal ions.
    Kuznetsova IA, Orlovskaya IA, Buneva VN, Nevinsky GA.
    Biochim Biophys Acta; 2007 Jul 23; 1774(7):884-96. PubMed ID: 17561457
    [Abstract] [Full Text] [Related]

  • 11. Synthesis, characterization and antimicrobial study of polymeric transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II).
    Khan SA, Nami SAA, Bhat SA, Kareem A, Nishat N.
    Microb Pathog; 2017 Sep 23; 110():414-425. PubMed ID: 28729223
    [Abstract] [Full Text] [Related]

  • 12. Isostructural dinuclear phenoxo-/acetato-bridged manganese(II), cobalt(II), and zinc(II) complexes with labile sites: kinetics of transesterification of 2-hydroxypropyl-p-nitrophenylphosphate.
    Arora H, Barman SK, Lloret F, Mukherjee R.
    Inorg Chem; 2012 May 21; 51(10):5539-53. PubMed ID: 22536852
    [Abstract] [Full Text] [Related]

  • 13. 65Zn(II), 115mCd(II), 60Co(II), and mg(II) binding to alkaline phosphatase of Escherichia coli. Structural and functional effects.
    Coleman JE, Nakamura K, Chlebowski JF.
    J Biol Chem; 1983 Jan 10; 258(1):386-95. PubMed ID: 6336751
    [Abstract] [Full Text] [Related]

  • 14. Optimizing the molarity of a EDTA washing solution for saturated-soil remediation of trace metal contaminated soils.
    Andrade MD, Prasher SO, Hendershot WH.
    Environ Pollut; 2007 Jun 10; 147(3):781-90. PubMed ID: 17218042
    [Abstract] [Full Text] [Related]

  • 15. Anti-oxidant, in vitro, in vivo anti-inflammatory activity and antiproliferative activity of mefenamic acid and its metal complexes with manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II).
    Kovala-Demertzi D, Hadjipavlou-Litina D, Staninska M, Primikiri A, Kotoglou C, Demertzis MA.
    J Enzyme Inhib Med Chem; 2009 Jun 10; 24(3):742-52. PubMed ID: 18720191
    [Abstract] [Full Text] [Related]

  • 16. Catalytic dioxygenation of flavonol by M(II)-complexes (M = Mn, Fe, Co, Ni, Cu and Zn) - mimicking the M(II)-substituted quercetin 2,3-dioxygenase.
    Sun YJ, Huang QQ, Li P, Zhang JJ.
    Dalton Trans; 2015 Aug 21; 44(31):13926-38. PubMed ID: 26153684
    [Abstract] [Full Text] [Related]

  • 17. Characterization of metal-substituted Klebsiella aerogenes urease.
    Yamaguchi K, Cosper NJ, Stålhandske C, Scott RA, Pearson MA, Karplus PA, Hausinger RP.
    J Biol Inorg Chem; 1999 Aug 21; 4(4):468-77. PubMed ID: 10555581
    [Abstract] [Full Text] [Related]

  • 18. Spectroscopic characterization of Co(II)-, Ni(II)-, and Cd(II)-substituted wild-type and non-native retroviral-type zinc finger peptides.
    Chen X, Chu M, Giedroc DP.
    J Biol Inorg Chem; 2000 Feb 21; 5(1):93-101. PubMed ID: 10766441
    [Abstract] [Full Text] [Related]

  • 19. Metal dependency for transcription factor rho activation.
    Weber TP, Widger WR, Kohn H.
    Biochemistry; 2003 Feb 18; 42(6):1652-9. PubMed ID: 12578379
    [Abstract] [Full Text] [Related]

  • 20. Flavonolate complexes of M(II) (M = Mn, Fe, Co, Ni, Cu, and Zn). Structural and functional models for the ES (enzyme-substrate) complex of quercetin 2,3-dioxygenase.
    Sun YJ, Huang QQ, Tano T, Itoh S.
    Inorg Chem; 2013 Oct 07; 52(19):10936-48. PubMed ID: 24044415
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.