These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 7773727

  • 1. Inhibition of the oxidative modification of LDL by nitecapone.
    Pentikäinen MO, Lindstedt KA, Kovanen PT.
    Arterioscler Thromb Vasc Biol; 1995 Jun; 15(6):740-7. PubMed ID: 7773727
    [Abstract] [Full Text] [Related]

  • 2. Antioxidant properties of nitecapone are potentiated by glutathione.
    Nissinen E, Lindén IB, Pohto P.
    Biochem Mol Biol Int; 1995 Feb; 35(2):387-95. PubMed ID: 7663394
    [Abstract] [Full Text] [Related]

  • 3. Tetradecylthioacetic acid inhibits the oxidative modification of low density lipoprotein and 8-hydroxydeoxyguanosine formation in vitro.
    Muna ZA, Doudin K, Songstad J, Ulvik RJ, Berge RK.
    Arterioscler Thromb Vasc Biol; 1997 Nov; 17(11):3255-62. PubMed ID: 9409320
    [Abstract] [Full Text] [Related]

  • 4. Protective effects of endomorphins, endogenous opioid peptides in the brain, on human low density lipoprotein oxidation.
    Lin X, Xue LY, Wang R, Zhao QY, Chen Q.
    FEBS J; 2006 Mar; 273(6):1275-84. PubMed ID: 16519691
    [Abstract] [Full Text] [Related]

  • 5. Lycopene synergistically inhibits LDL oxidation in combination with vitamin E, glabridin, rosmarinic acid, carnosic acid, or garlic.
    Fuhrman B, Volkova N, Rosenblat M, Aviram M.
    Antioxid Redox Signal; 2000 Mar; 2(3):491-506. PubMed ID: 11229363
    [Abstract] [Full Text] [Related]

  • 6. Effects of methyl 9(or 10)-hydroxy-10(or 9)-mercaptostearate and hexadecanethioic S-acid on cupric ion- or 2,2-azo-bis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidation of low density lipoprotein.
    Tanaka M, Takada K, Higuchi T, Nakagawa M, Murase M, Tobinaga S.
    Biol Pharm Bull; 1996 May; 19(5):692-6. PubMed ID: 8741576
    [Abstract] [Full Text] [Related]

  • 7. The hypolipidemic natural product Commiphora mukul and its component guggulsterone inhibit oxidative modification of LDL.
    Wang X, Greilberger J, Ledinski G, Kager G, Paigen B, Jürgens G.
    Atherosclerosis; 2004 Feb; 172(2):239-46. PubMed ID: 15019533
    [Abstract] [Full Text] [Related]

  • 8. Antioxidant properties of nitecapone (OR-462).
    Suzuki YJ, Tsuchiya M, Safadi A, Kagan VE, Packer L.
    Free Radic Biol Med; 1992 Nov; 13(5):517-25. PubMed ID: 1334029
    [Abstract] [Full Text] [Related]

  • 9. The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation.
    Belinky PA, Aviram M, Fuhrman B, Rosenblat M, Vaya J.
    Atherosclerosis; 1998 Mar; 137(1):49-61. PubMed ID: 9568736
    [Abstract] [Full Text] [Related]

  • 10. Melatonin related compounds inhibit lipid peroxidation during copper or free radical-induced LDL oxidation.
    Bonnefont-Rousselot D, Chevé G, Gozzo A, Tailleux A, Guilloz V, Caisey S, Teissier E, Fruchart JC, Delattre J, Jore D, Lesieur D, Duriez P, Gardès-Albert M.
    J Pineal Res; 2002 Sep; 33(2):109-17. PubMed ID: 12153445
    [Abstract] [Full Text] [Related]

  • 11. A critical assessment of the effects of aminoguanidine and ascorbate on the oxidative modification of LDL: evidence for interference with some assays of lipoprotein oxidation by aminoguanidine.
    Scaccini C, Chiesa G, Jialal I.
    J Lipid Res; 1994 Jun; 35(6):1085-92. PubMed ID: 8077847
    [Abstract] [Full Text] [Related]

  • 12. Thyroid hormone (T3) and its acetic derivative (TA3) protect low-density lipoproteins from oxidation by different mechanisms.
    Faure P, Oziol L, Artur Y, Chomard P.
    Biochimie; 2004 Jun; 86(6):411-8. PubMed ID: 15283976
    [Abstract] [Full Text] [Related]

  • 13. Interactive effects of polyphenols, tocopherol and ascorbic acid on the Cu2+-mediated oxidative modification of human low density lipoproteins.
    Yeomans VC, Linseisen J, Wolfram G.
    Eur J Nutr; 2005 Oct; 44(7):422-8. PubMed ID: 15827683
    [Abstract] [Full Text] [Related]

  • 14. When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid.
    Bagnati M, Perugini C, Cau C, Bordone R, Albano E, Bellomo G.
    Biochem J; 1999 May 15; 340 ( Pt 1)(Pt 1):143-52. PubMed ID: 10229669
    [Abstract] [Full Text] [Related]

  • 15. Effects of resveratrol on oxidative modification of human low density lipoprotein.
    Zou J, Huang Y, Chen Q, Wei E, Cao K, Wu JM.
    Chin Med J (Engl); 2000 Feb 15; 113(2):99-102. PubMed ID: 11775553
    [Abstract] [Full Text] [Related]

  • 16. Ascorbic acid oxidation product(s) protect human low density lipoprotein against atherogenic modification. Anti- rather than prooxidant activity of vitamin C in the presence of transition metal ions.
    Retsky KL, Freeman MW, Frei B.
    J Biol Chem; 1993 Jan 15; 268(2):1304-9. PubMed ID: 8419332
    [Abstract] [Full Text] [Related]

  • 17. Inhibition of copper-induced LDL oxidation by vitamin C is associated with decreased copper-binding to LDL and 2-oxo-histidine formation.
    Retsky KL, Chen K, Zeind J, Frei B.
    Free Radic Biol Med; 1999 Jan 15; 26(1-2):90-8. PubMed ID: 9890644
    [Abstract] [Full Text] [Related]

  • 18. Making vitamin C lipophilic enhances its protective effect against free radical induced peroxidation of low density lipoprotein.
    Liu ZQ, Ma LP, Liu ZL.
    Chem Phys Lipids; 1998 Sep 15; 95(1):49-57. PubMed ID: 9807809
    [Abstract] [Full Text] [Related]

  • 19. Effect of homocysteine on copper ion-catalyzed, azo compound-initiated, and mononuclear cell-mediated oxidative modification of low density lipoprotein.
    Halvorsen B, Brude I, Drevon CA, Nysom J, Ose L, Christiansen EN, Nenseter MS.
    J Lipid Res; 1996 Jul 15; 37(7):1591-600. PubMed ID: 8827529
    [Abstract] [Full Text] [Related]

  • 20. Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives.
    Nardini M, D'Aquino M, Tomassi G, Gentili V, Di Felice M, Scaccini C.
    Free Radic Biol Med; 1995 Nov 15; 19(5):541-52. PubMed ID: 8529913
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.