These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
539 related items for PubMed ID: 7777157
1. Quinolinic acid-induced increases in calbindin D28k immunoreactivity in rat striatal neurons in vivo and in vitro mimic the pattern seen in Huntington's disease. Huang Q, Zhou D, Sapp E, Aizawa H, Ge P, Bird ED, Vonsattel JP, DiFiglia M. Neuroscience; 1995 Mar; 65(2):397-407. PubMed ID: 7777157 [Abstract] [Full Text] [Related]
2. Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington's disease transgenic mice. Sun Z, Wang HB, Deng YP, Lei WL, Xie JP, Meade CA, Del Mar N, Goldowitz D, Reiner A. Neurobiol Dis; 2005 Dec; 20(3):907-17. PubMed ID: 15990326 [Abstract] [Full Text] [Related]
3. Administration of recombinant human Activin-A has powerful neurotrophic effects on select striatal phenotypes in the quinolinic acid lesion model of Huntington's disease. Hughes PE, Alexi T, Williams CE, Clark RG, Gluckman PD. Neuroscience; 1999 Dec; 92(1):197-209. PubMed ID: 10392842 [Abstract] [Full Text] [Related]
4. Glial cell line-derived neurotrophic factor protects striatal calbindin-immunoreactive neurons from excitotoxic damage. Pérez-Navarro E, Arenas E, Reiriz J, Calvo N, Alberch J. Neuroscience; 1996 Nov; 75(2):345-52. PubMed ID: 8931001 [Abstract] [Full Text] [Related]
5. Excitotoxin lesions in primates as a model for Huntington's disease: histopathologic and neurochemical characterization. Ferrante RJ, Kowall NW, Cipolloni PB, Storey E, Beal MF. Exp Neurol; 1993 Jan; 119(1):46-71. PubMed ID: 8432351 [Abstract] [Full Text] [Related]
7. Relative resistance of striatal neurons containing calbindin or parvalbumin to quinolinic acid-mediated excitotoxicity compared to other striatal neuron types. Figueredo-Cardenas G, Harris CL, Anderson KD, Reiner A. Exp Neurol; 1998 Feb; 149(2):356-72. PubMed ID: 9500958 [Abstract] [Full Text] [Related]
8. Early effects of intrastriatal injections of quinolinic acid on microtubule-associated protein-2 and neuropeptides in rat basal ganglia. Bordelon YM, Chesselet MF. Neuroscience; 1999 Feb; 93(3):843-53. PubMed ID: 10473250 [Abstract] [Full Text] [Related]
9. Calbindin D28K as a marker for the degeneration of the striatonigral pathway in Huntington's disease. Kiyama H, Seto-Ohshima A, Emson PC. Brain Res; 1990 Aug 20; 525(2):209-14. PubMed ID: 2147568 [Abstract] [Full Text] [Related]
11. Chemical and anatomical changes in the striatum and substantia nigra following quinolinic acid lesions in the striatum of the rat: a detailed time course of the cellular and GABA(A) receptor changes. Brickell KL, Nicholson LF, Waldvogel HJ, Faull RL. J Chem Neuroanat; 1999 Oct 20; 17(2):75-97. PubMed ID: 10585160 [Abstract] [Full Text] [Related]
12. Huntingtin immunoreactivity in the rat neostriatum: differential accumulation in projection and interneurons. Kosinski CM, Cha JH, Young AB, Persichetti F, MacDonald M, Gusella JF, Penney JB, Standaert DG. Exp Neurol; 1997 Apr 20; 144(2):239-47. PubMed ID: 9168825 [Abstract] [Full Text] [Related]
13. Lithium suppresses excitotoxicity-induced striatal lesions in a rat model of Huntington's disease. Wei H, Qin ZH, Senatorov VV, Wei W, Wang Y, Qian Y, Chuang DM. Neuroscience; 2001 Apr 20; 106(3):603-12. PubMed ID: 11591460 [Abstract] [Full Text] [Related]
14. Neurturin protects striatal projection neurons but not interneurons in a rat model of Huntington's disease. Pérez-Navarro E, Akerud P, Marco S, Canals JM, Tolosa E, Arenas E, Alberch J. Neuroscience; 2000 Apr 20; 98(1):89-96. PubMed ID: 10858615 [Abstract] [Full Text] [Related]
15. Transgenic mice expressing a Huntington's disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Hansson O, Petersén A, Leist M, Nicotera P, Castilho RF, Brundin P. Proc Natl Acad Sci U S A; 1999 Jul 20; 96(15):8727-32. PubMed ID: 10411943 [Abstract] [Full Text] [Related]
16. Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity. Liang ZQ, Wang XX, Wang Y, Chuang DM, DiFiglia M, Chase TN, Qin ZH. Neurobiol Dis; 2005 Nov 20; 20(2):562-73. PubMed ID: 15922606 [Abstract] [Full Text] [Related]
17. Glial cell line-derived neurotrophic factor attenuates the excitotoxin-induced behavioral and neurochemical deficits in a rodent model of Huntington's disease. Araujo DM, Hilt DC. Neuroscience; 1997 Dec 20; 81(4):1099-110. PubMed ID: 9330371 [Abstract] [Full Text] [Related]
18. Protective effects of neurotrophin-4/5 and transforming growth factor-alpha on striatal neuronal phenotypic degeneration after excitotoxic lesioning with quinolinic acid. Alexi T, Venero JL, Hefti F. Neuroscience; 1997 May 20; 78(1):73-86. PubMed ID: 9135090 [Abstract] [Full Text] [Related]
19. Intrastriatal infusion of nerve growth factor after quinolinic acid prevents reduction of cellular expression of choline acetyltransferase messenger RNA and trkA messenger RNA, but not glutamate decarboxylase messenger RNA. Venero JL, Beck KD, Hefti F. Neuroscience; 1994 Jul 20; 61(2):257-68. PubMed ID: 7969907 [Abstract] [Full Text] [Related]
20. Ultrastructural localization of calbindin-D28k and GABA in the matrix compartment of the rat caudate-putamen nuclei. Pickel VM, Heras A. Neuroscience; 1996 Mar 20; 71(1):167-78. PubMed ID: 8834400 [Abstract] [Full Text] [Related] Page: [Next] [New Search]