These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


117 related items for PubMed ID: 778846

  • 1. Ribosomal proteins of Escherichia coli that stimulate stringent-factor-mediated pyrophosphoryl transfer in vitro.
    Christiansen L, Neirhaus KH.
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1839-43. PubMed ID: 778846
    [Abstract] [Full Text] [Related]

  • 2. A new transfer RNA fragment reaction: Tp psi pCpGp bound to a ribosome-messenger RNA complex induces the synthesis of guanosine tetra- and pentaphosphates.
    Richter D, Erdmann VA, Sprinzl M.
    Proc Natl Acad Sci U S A; 1974 Aug; 71(8):3226-9. PubMed ID: 4606128
    [Abstract] [Full Text] [Related]

  • 3. Nonribosomal synthesis of guanosine 5',3'-polyphosphates by the ribosomal wash of stringent Escherichia coli.
    Sy J, Ogawa Y, Lipmann F.
    Proc Natl Acad Sci U S A; 1973 Jul; 70(7):2145-8. PubMed ID: 4579015
    [Abstract] [Full Text] [Related]

  • 4. Eukaryotic ribosomal proteins stimulate Escherichia coli stringent factor to synthesize guanosine 5'-diphosphate, 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate, 3'-diphosphate (ppGpp).
    Martini O, Richter D.
    Mol Gen Genet; 1978 Nov 09; 166(3):291-7. PubMed ID: 216901
    [Abstract] [Full Text] [Related]

  • 5. Ability of modified forms of phenylalanine tRNA to stimulate guanosine pentaphosphate synthesis by the stringent factor-ribosome complex of E. coli.
    Ofengand J, Liou R.
    Nucleic Acids Res; 1978 Apr 09; 5(4):1325-34. PubMed ID: 349503
    [Abstract] [Full Text] [Related]

  • 6. Synthesis of guanosine tetra- and pentaphosphate requires the presence of a codon-specific, uncharged transfer ribonucleic acid in the acceptor site of ribosomes.
    Haseltine WA, Block R.
    Proc Natl Acad Sci U S A; 1973 May 09; 70(5):1564-8. PubMed ID: 4576025
    [Abstract] [Full Text] [Related]

  • 7. Role of the aminoacyl end of transfer RNA in the allosteric control of guanosine pentaphosphate synthesis by the stringent factor-ribosome complex of Escherichia coli.
    Chinali G, Liou R, Ofengand J.
    Biochemistry; 1978 Jul 11; 17(14):2761-8. PubMed ID: 356874
    [No Abstract] [Full Text] [Related]

  • 8. Dissection of the mechanism for the stringent factor RelA.
    Wendrich TM, Blaha G, Wilson DN, Marahiel MA, Nierhaus KH.
    Mol Cell; 2002 Oct 11; 10(4):779-88. PubMed ID: 12419222
    [Abstract] [Full Text] [Related]

  • 9. Localization of the stringent protein of Escherichia coli on the 50S ribosomal subunit.
    Ramagopal S, Davis BD.
    Proc Natl Acad Sci U S A; 1974 Mar 11; 71(3):820-4. PubMed ID: 4595574
    [Abstract] [Full Text] [Related]

  • 10. Free 3'-OH group of the terminal adenosine of the tRNA molecule is essential for the synthesis in vitro of guanosine tetraphosphate and pentaphosphate in a ribosomal system from Escherichia coli.
    Sprinzl M, Richter D.
    Eur J Biochem; 1976 Dec 11; 71(1):171-6. PubMed ID: 795660
    [Abstract] [Full Text] [Related]

  • 11. Stringent response of Bacillus stearothermophilus: evidence for the existence of two distinct guanosine 3',5'-polyphosphate synthetases.
    Fehr S, Richter D.
    J Bacteriol; 1981 Jan 11; 145(1):68-73. PubMed ID: 6161916
    [Abstract] [Full Text] [Related]

  • 12. Ribosomal synthesis of guanosine tetra- and pentaphosphate with mRNAs of different chain length.
    Giesen M, Erdmann VA.
    FEBS Lett; 1977 Nov 01; 83(1):125-7. PubMed ID: 336399
    [No Abstract] [Full Text] [Related]

  • 13. Stringent factor from Escherichia coli directs ribosomal binding and release of uncharged tRNA.
    Richter D.
    Proc Natl Acad Sci U S A; 1976 Mar 01; 73(3):707-11. PubMed ID: 768983
    [Abstract] [Full Text] [Related]

  • 14. Methylgroups of ribosomal protein L11 are not related to the synthesis of ppGpp.
    Röhl R, Nierhaus KH.
    Mol Gen Genet; 1979 Feb 26; 170(2):187-9. PubMed ID: 372761
    [Abstract] [Full Text] [Related]

  • 15. Altered specificity of synthesis of guanosine tetraphosphate (ppGpp) and pentaphosphate (ppGpp) by salt-washed ribosomes.
    Ramagopal S.
    Biochem Biophys Res Commun; 1974 May 07; 58(1):268-71. PubMed ID: 4598443
    [No Abstract] [Full Text] [Related]

  • 16. The stimulation of Escherichia coli stringent factor-dependent synthesis of guanosine 3',5'-polyphosphate [(p)ppGpp] by rat liver ribosomal proteins.
    Fehr S, Lin A, Wool IG, Richter D.
    Mol Gen Genet; 1979 Nov 07; 176(3):375-7. PubMed ID: 230408
    [Abstract] [Full Text] [Related]

  • 17. Characterization of the tRNA and ribosome-dependent pppGpp-synthesis by recombinant stringent factor from Escherichia coli.
    Knutsson Jenvert RM, Holmberg Schiavone L.
    FEBS J; 2005 Feb 07; 272(3):685-95. PubMed ID: 15670150
    [Abstract] [Full Text] [Related]

  • 18. The flexible N-terminal domain of ribosomal protein L11 from Escherichia coli is necessary for the activation of stringent factor.
    Jenvert RM, Schiavone LH.
    J Mol Biol; 2007 Jan 19; 365(3):764-72. PubMed ID: 17095013
    [Abstract] [Full Text] [Related]

  • 19. Purification and properties of stringent factor.
    Block R, Haseltine AW.
    J Biol Chem; 1975 Feb 25; 250(4):1212-7. PubMed ID: 163249
    [Abstract] [Full Text] [Related]

  • 20. Synthesis of stable RNA in stringent Escherichia coli cells in the absence of charged transfer RNA.
    Kaplan S, Atherly AG, Barrett A.
    Proc Natl Acad Sci U S A; 1973 Mar 25; 70(3):689-92. PubMed ID: 4577134
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.