These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 7790923

  • 21. Cytoarchitecture of the tectum opticum in the Japanese quail.
    Hilbig H, Roth G, Brylla E, Robiné KP.
    Neuroscience; 1998 Sep; 86(2):663-78. PubMed ID: 9881878
    [Abstract] [Full Text] [Related]

  • 22. Spatial arrangement of radial glia and ingrowing retinal axons in the chick optic tectum during development.
    Vanselow J, Thanos S, Godement P, Henke-Fahle S, Bonhoeffer F.
    Brain Res Dev Brain Res; 1989 Jan 01; 45(1):15-27. PubMed ID: 2917409
    [Abstract] [Full Text] [Related]

  • 23. The avian tectobulbar tract: development, explant culture, and effects of antibodies on the pattern of neurite outgrowth.
    Kröger S, Schwarz U.
    J Neurosci; 1990 Sep 01; 10(9):3118-34. PubMed ID: 2204687
    [Abstract] [Full Text] [Related]

  • 24. Distribution of substance P-like immunoreactive retinal ganglion cells and their pattern of termination in the optic tectum of chick (Gallus gallus).
    Ehrlich D, Keyser KT, Karten HJ.
    J Comp Neurol; 1987 Dec 08; 266(2):220-33. PubMed ID: 2449469
    [Abstract] [Full Text] [Related]

  • 25. Isolation, characterization, and substrate properties of the external limiting membrane from the avian embryonic optic tectum.
    Kröger S, Niehörster L.
    J Neurosci Res; 1990 Oct 08; 27(2):169-83. PubMed ID: 2254962
    [Abstract] [Full Text] [Related]

  • 26. Growth hormone and its receptor in projection neurons of the chick visual system: retinofugal and tectobulbar tracts.
    Baudet ML, Rattray D, Harvey S.
    Neuroscience; 2007 Aug 10; 148(1):151-63. PubMed ID: 17618059
    [Abstract] [Full Text] [Related]

  • 27. Axonal arborization in the developing chick retinotectal system.
    Thanos S, Bonhoeffer F.
    J Comp Neurol; 1987 Jul 01; 261(1):155-64. PubMed ID: 3624542
    [Abstract] [Full Text] [Related]

  • 28. Immunolocalization studies of putative guidance molecules used by axons and growth cones of intersegemental interneurons in the chick embryo spinal cord.
    Shiga T, Oppenheim RW.
    J Comp Neurol; 1991 Aug 08; 310(2):234-52. PubMed ID: 1720141
    [Abstract] [Full Text] [Related]

  • 29. Disruption of the pial basal lamina during early avian embryonic development inhibits histogenesis and axonal pathfinding in the optic tectum.
    Halfter W, Schurer B.
    J Comp Neurol; 1998 Jul 20; 397(1):105-17. PubMed ID: 9671282
    [Abstract] [Full Text] [Related]

  • 30. Immunohistochemical study of basement membrane reconstruction by an epidermis-dermis recombination experiment using cultured chick embryonic skin: induction of tenascin.
    Akimoto Y, Obinata A, Endo H, Hirano H.
    J Histochem Cytochem; 1992 Aug 20; 40(8):1129-37. PubMed ID: 1377733
    [Abstract] [Full Text] [Related]

  • 31. Chick PTPsigma regulates the targeting of retinal axons within the optic tectum.
    Rashid-Doubell F, McKinnell I, Aricescu AR, Sajnani G, Stoker A.
    J Neurosci; 2002 Jun 15; 22(12):5024-33. PubMed ID: 12077198
    [Abstract] [Full Text] [Related]

  • 32. Outgrowth and directional specificity of fibers from embryonic retinal transplants in the chick optic tectum.
    Thanos S, Dütting D.
    Brain Res; 1987 Apr 15; 429(2):161-79. PubMed ID: 3567662
    [Abstract] [Full Text] [Related]

  • 33. Substance P, bombesin, and leucine-enkephalin immunoreactivities are restored in the frog tectum after optic nerve regeneration.
    Humphrey MF, Renshaw GM, Kitchener PD, Beazley LD.
    J Comp Neurol; 1995 Apr 03; 354(2):295-305. PubMed ID: 7540184
    [Abstract] [Full Text] [Related]

  • 34. Distribution and role in regeneration of N-CAM in the basal laminae of muscle and Schwann cells.
    Rieger F, Nicolet M, Pinçon-Raymond M, Murawsky M, Levi G, Edelman GM.
    J Cell Biol; 1988 Aug 03; 107(2):707-19. PubMed ID: 3047146
    [Abstract] [Full Text] [Related]

  • 35. Presynaptic neurotrophin-3 increases the number of tectal synapses, vesicle density, and number of docked vesicles in chick embryos.
    Wang X, Butowt R, von Bartheld CS.
    J Comp Neurol; 2003 Mar 24; 458(1):62-77. PubMed ID: 12577323
    [Abstract] [Full Text] [Related]

  • 36. Ultrastructural localization of lectin binding sites in the developing brain microvasculature.
    Nico B, Quondamatteo F, Ribatti D, Bertossi M, Russo G, Herken R, Roncali L.
    Anat Embryol (Berl); 1998 Apr 24; 197(4):305-15. PubMed ID: 9565323
    [Abstract] [Full Text] [Related]

  • 37. Targeting axons to specific fiber tracts in vivo by altering cadherin expression.
    Treubert-Zimmermann U, Heyers D, Redies C.
    J Neurosci; 2002 Sep 01; 22(17):7617-26. PubMed ID: 12196585
    [Abstract] [Full Text] [Related]

  • 38. OL-protocadherin expression in the visual system of the chicken embryo.
    Müller K, Hirano S, Puelles L, Redies C.
    J Comp Neurol; 2004 Mar 08; 470(3):240-55. PubMed ID: 14755514
    [Abstract] [Full Text] [Related]

  • 39. Role of cell adhesion molecule DM-GRASP in growth and orientation of retinal ganglion cell axons.
    Avci HX, Zelina P, Thelen K, Pollerberg GE.
    Dev Biol; 2004 Jul 15; 271(2):291-305. PubMed ID: 15223335
    [Abstract] [Full Text] [Related]

  • 40. Dynamic expression patterns of tenascin, proteoglycans, and cell adhesion molecules during human hair follicle morphogenesis.
    Kaplan ED, Holbrook KA.
    Dev Dyn; 1994 Feb 15; 199(2):141-55. PubMed ID: 7515726
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.