These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 7794266
21. Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Venkateswarlu K, Oatey PB, Tavaré JM, Cullen PJ. Curr Biol; 1998 Apr 09; 8(8):463-6. PubMed ID: 9550703 [Abstract] [Full Text] [Related]
22. Glut4 Is Sorted from a Rab10 GTPase-independent Constitutive Recycling Pathway into a Highly Insulin-responsive Rab10 GTPase-dependent Sequestration Pathway after Adipocyte Differentiation. Brewer PD, Habtemichael EN, Romenskaia I, Mastick CC, Coster AC. J Biol Chem; 2016 Jan 08; 291(2):773-89. PubMed ID: 26527681 [Abstract] [Full Text] [Related]
24. On the mechanism for neomycin reversal of wortmannin inhibition of insulin stimulation of glucose uptake. Shimaya A, Kovacina KS, Roth RA. J Biol Chem; 2004 Dec 31; 279(53):55277-82. PubMed ID: 15504741 [Abstract] [Full Text] [Related]
26. A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3-L1 adipocytes. Jarvill-Taylor KJ, Anderson RA, Graves DJ. J Am Coll Nutr; 2001 Aug 31; 20(4):327-36. PubMed ID: 11506060 [Abstract] [Full Text] [Related]
27. PI-3-kinase inhibitor Wortmannin blocks the insulin-like effects of growth hormone in isolated rat adipocytes. Ridderstråle M, Tornqvist H. Biochem Biophys Res Commun; 1994 Aug 30; 203(1):306-10. PubMed ID: 8074671 [Abstract] [Full Text] [Related]
28. Lysophosphatidic acid stimulates glucose transport in Xenopus oocytes via a phosphatidylinositol 3'-kinase with distinct properties. Thomson FJ, Moyes C, Scott PH, Plevin R, Gould GW. Biochem J; 1996 May 15; 316 ( Pt 1)(Pt 1):161-6. PubMed ID: 8645200 [Abstract] [Full Text] [Related]
29. Insulin-stimulated fusion of GLUT4 vesicles to plasma membrane is dependent on wortmannin-sensitive insulin signaling pathway in 3T3-L1 adipocytes. Kawaguchi T, Tamori Y, Yoshikawa M, Kanda H, Kasuga M. Kobe J Med Sci; 2008 Oct 30; 54(4):E209-16. PubMed ID: 19258741 [Abstract] [Full Text] [Related]
30. Requirement for phosphoinositide 3-kinase in insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. Kotani K, Carozzi AJ, Sakaue H, Hara K, Robinson LJ, Clark SF, Yonezawa K, James DE, Kasuga M. Biochem Biophys Res Commun; 1995 Apr 06; 209(1):343-8. PubMed ID: 7726855 [Abstract] [Full Text] [Related]
31. Evidence for phosphatidylinositol 3-kinase as a regulator of endocytosis via activation of Rab5. Li G, D'Souza-Schorey C, Barbieri MA, Roberts RL, Klippel A, Williams LT, Stahl PD. Proc Natl Acad Sci U S A; 1995 Oct 24; 92(22):10207-11. PubMed ID: 7479754 [Abstract] [Full Text] [Related]
32. Glucose deprivation induces Akt-dependent synthesis and incorporation of GLUT1, but not of GLUT4, into the plasma membrane of 3T3-L1 adipocytes. von der Crone S, Deppe C, Barthel A, Sasson S, Joost HG, Schürmann A. Eur J Cell Biol; 2000 Dec 24; 79(12):943-9. PubMed ID: 11152285 [Abstract] [Full Text] [Related]
33. A role for phosphoinositide 3-kinase in the completion of macropinocytosis and phagocytosis by macrophages. Araki N, Johnson MT, Swanson JA. J Cell Biol; 1996 Dec 24; 135(5):1249-60. PubMed ID: 8947549 [Abstract] [Full Text] [Related]
34. Protein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3-L1 adipocyte differentiation. Xu J, Liao K. J Biol Chem; 2004 Aug 20; 279(34):35914-22. PubMed ID: 15192111 [Abstract] [Full Text] [Related]
35. Control of proteolysis by norepinephrine and insulin in brown adipocytes: role of ATP, phosphatidylinositol 3-kinase, and p70 S6K. Moazed B, Desautels M. Can J Physiol Pharmacol; 2002 Jun 20; 80(6):541-52. PubMed ID: 12117303 [Abstract] [Full Text] [Related]
36. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. Okada T, Kawano Y, Sakakibara T, Hazeki O, Ui M. J Biol Chem; 1994 Feb 04; 269(5):3568-73. PubMed ID: 8106400 [Abstract] [Full Text] [Related]
37. Wortmannin-sensitive trafficking pathways in Chinese hamster ovary cells. Differential effects on endocytosis and lysosomal sorting. Martys JL, Wjasow C, Gangi DM, Kielian MC, McGraw TE, Backer JM. J Biol Chem; 1996 May 03; 271(18):10953-62. PubMed ID: 8631914 [Abstract] [Full Text] [Related]
38. Effects of wortmannin on glucose uptake and protein kinase C activity in rat adipocytes. Ishizuka T, Nagashima T, Yamamoto M, Kajita K, Yamada K, Wada H, Itaya S, Yasuda K, Nozawa Y. Diabetes Res Clin Pract; 1995 Sep 03; 29(3):143-52. PubMed ID: 8591706 [Abstract] [Full Text] [Related]
39. Wortmannin causes mistargeting of procathepsin D. evidence for the involvement of a phosphatidylinositol 3-kinase in vesicular transport to lysosomes. Davidson HW. J Cell Biol; 1995 Aug 03; 130(4):797-805. PubMed ID: 7642698 [Abstract] [Full Text] [Related]
40. Insulin regulation of sterol regulatory element-binding protein-1 expression in L-6 muscle cells and 3T3 L1 adipocytes. Nadeau KJ, Leitner JW, Gurerich I, Draznin B. J Biol Chem; 2004 Aug 13; 279(33):34380-7. PubMed ID: 15187085 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]