These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Characterization of the putative GTP-binding site residues of Escherichia coli adenylosuccinate synthetase by site-directed mutagenesis. Kang C, Fromm HJ. Arch Biochem Biophys; 1994 May 01; 310(2):475-80. PubMed ID: 8179335 [Abstract] [Full Text] [Related]
26. Zinc-dependent cell growth conferred by mutant tRNA synthetase. Landro JA, Schimmel P. J Biol Chem; 1994 Aug 12; 269(32):20217-20. PubMed ID: 8051111 [Abstract] [Full Text] [Related]
28. A minimalist glutamyl-tRNA synthetase dedicated to aminoacylation of the tRNAAsp QUC anticodon. Blaise M, Becker HD, Keith G, Cambillau C, Lapointe J, Giegé R, Kern D. Nucleic Acids Res; 2004 Aug 12; 32(9):2768-75. PubMed ID: 15150343 [Abstract] [Full Text] [Related]
29. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Study of the interactions with its substrates. Kern D, Lapointe J. Biochemistry; 1979 Dec 25; 18(26):5809-18. PubMed ID: 229901 [Abstract] [Full Text] [Related]
32. Evidence for distinct locations for metal binding sites in two closely related class I tRNA synthetases. Schimmel P, Landro JA, Schmidt E. J Biomol Struct Dyn; 1993 Dec 25; 11(3):571-81. PubMed ID: 8129874 [Abstract] [Full Text] [Related]
33. Crucial role of an idiosyncratic insertion in the Rossman fold of class 1 aminoacyl-tRNA synthetases: the case of methionyl-tRNA synthetase. Fourmy D, Mechulam Y, Blanquet S. Biochemistry; 1995 Dec 05; 34(48):15681-8. PubMed ID: 7495798 [Abstract] [Full Text] [Related]
35. The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli. Onesti S, Miller AD, Brick P. Structure; 1995 Feb 15; 3(2):163-76. PubMed ID: 7735833 [Abstract] [Full Text] [Related]
36. Affinity labeling of Escherichia coli histidyl-tRNA synthetase with reactive ATP analogues. Identification of labeled amino acid residues by matrix assisted laser desorption-ionization mass spectrometry. Gillet S, Hoang CB, Schmitter JM, Fukui T, Blanquet S, Hountondji C. Eur J Biochem; 1996 Oct 01; 241(1):133-41. PubMed ID: 8898898 [Abstract] [Full Text] [Related]
37. Structural and functional consequences of mutating a proteobacteria-specific surface residue in the catalytic domain of Escherichia coli GluRS. Dasgupta S, Manna D, Basu G. FEBS Lett; 2012 Jun 12; 586(12):1724-30. PubMed ID: 22584057 [Abstract] [Full Text] [Related]
38. On the multiple functional roles of the active site histidine in catalysis and allosteric regulation of Escherichia coli glucosamine 6-phosphate deaminase. Montero-Morán GM, Lara-González S, Alvarez-Añorve LI, Plumbridge JA, Calcagno ML. Biochemistry; 2001 Aug 28; 40(34):10187-96. PubMed ID: 11513596 [Abstract] [Full Text] [Related]
39. Identification of the gltX gene encoding glutamyl-tRNA synthetase from Methanobacterium thermoautotrophicum. Moore JA, Chen A, Yan M, Hurlburt AP, Poulter CD. Biochim Biophys Acta; 1996 Mar 01; 1305(3):113-6. PubMed ID: 8597593 [Abstract] [Full Text] [Related]
40. Binding of human glutaminyl-tRNA synthetase to a specific site of its mRNA. Schray B, Knippers R. Nucleic Acids Res; 1991 Oct 11; 19(19):5307-12. PubMed ID: 1923815 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]