These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
111 related items for PubMed ID: 7803178
1. On the basal ganglia of amphibians: dopaminergic mesostriatal projections. González A, Muñoz M, Muñoz A, Marin O, Smeets WJ. Eur J Morphol; 1994 Aug; 32(2-4):271-4. PubMed ID: 7803178 [Abstract] [Full Text] [Related]
2. Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii. Gonzalez A, Smeets WJ. J Comp Neurol; 1991 Jan 15; 303(3):457-77. PubMed ID: 1672535 [Abstract] [Full Text] [Related]
3. Basal ganglia organization in amphibians: catecholaminergic innervation of the striatum and the nucleus accumbens. Marín O, Smeets WJ, González A. J Comp Neurol; 1997 Feb 03; 378(1):50-69. PubMed ID: 9120054 [Abstract] [Full Text] [Related]
4. Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens. Marín O, González A, Smeets WJ. J Comp Neurol; 1997 Mar 31; 380(1):23-50. PubMed ID: 9073081 [Abstract] [Full Text] [Related]
5. Ontogeny of catecholamine systems in the central nervous system of anuran amphibians: an immunohistochemical study with antibodies against tyrosine hydroxylase and dopamine. González A, Marín O, Tuinhof R, Smeets WJ. J Comp Neurol; 1994 Aug 01; 346(1):63-79. PubMed ID: 7962712 [Abstract] [Full Text] [Related]
6. Dopaminergic innervation of the telencephalon of the pigeon (Columba livia): a study with antibodies against tyrosine hydroxylase and dopamine. Wynne B, Güntürkün O. J Comp Neurol; 1995 Jul 03; 357(3):446-64. PubMed ID: 7673478 [Abstract] [Full Text] [Related]
7. Development of catecholamine systems in the central nervous system of the newt Pleurodeles waltlii as revealed by tyrosine hydroxylase immunohistochemistry. González A, Marín O, Smeets WJ. J Comp Neurol; 1995 Sep 11; 360(1):33-48. PubMed ID: 7499564 [Abstract] [Full Text] [Related]
8. Distribution of somatostatin-like immunoreactivity in the brain of the caecilian Dermophis mexicanus (Amphibia: Gymnophiona): comparative aspects in amphibians. López JM, Moreno N, Morona R, Muñoz M, Domínguez L, González A. J Comp Neurol; 2007 Mar 20; 501(3):413-30. PubMed ID: 17245705 [Abstract] [Full Text] [Related]
9. Light and electron microscopic immunohistochemical study of dopaminergic terminals in the striatal portion of the pigeon basal ganglia using antisera against tyrosine hydroxylase and dopamine. Karle EJ, Anderson KD, Medina L, Reiner A. J Comp Neurol; 1996 May 20; 369(1):109-24. PubMed ID: 8723706 [Abstract] [Full Text] [Related]
10. Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord. Sánchez-Camacho C, Marín O, Smeets WJ, Ten Donkelaar HJ, González A. J Comp Neurol; 2001 May 28; 434(2):209-32. PubMed ID: 11331525 [Abstract] [Full Text] [Related]
11. Light and electron microscopic characterization of cholinergic and dopaminergic structures in the striatal complex and the dorsal ventricular ridge of the lizard Gekko gecko. Henselmans JM, Wouterlood FG. J Comp Neurol; 1994 Jul 01; 345(1):69-83. PubMed ID: 7916354 [Abstract] [Full Text] [Related]
12. Comparative immunohistochemical analysis of the distribution of orexins (hypocretins) in the brain of amphibians. López JM, Domínguez L, Moreno N, González A. Peptides; 2009 May 01; 30(5):873-87. PubMed ID: 19428764 [Abstract] [Full Text] [Related]
13. Basal ganglia organization in amphibians: afferent connections to the striatum and the nucleus accumbens. Marín O, González A, Smeets WJ. J Comp Neurol; 1997 Feb 03; 378(1):16-49. PubMed ID: 9120053 [Abstract] [Full Text] [Related]
14. Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system. López JM, Morona R, González A. J Chem Neuroanat; 2010 Dec 03; 40(4):325-38. PubMed ID: 20887782 [Abstract] [Full Text] [Related]
15. Calbindin-D28k and calretinin expression in the forebrain of anuran and urodele amphibians: further support for newly identified subdivisions. Morona R, González A. J Comp Neurol; 2008 Nov 10; 511(2):187-220. PubMed ID: 18781620 [Abstract] [Full Text] [Related]
16. Colocalization of tyrosine hydroxylase and GAD65 mRNA in mesostriatal neurons. González-Hernández T, Barroso-Chinea P, Acevedo A, Salido E, Rodríguez M. Eur J Neurosci; 2001 Jan 10; 13(1):57-67. PubMed ID: 11135004 [Abstract] [Full Text] [Related]
17. Dopamine innervation of the monkey mediodorsal thalamus: Location of projection neurons and ultrastructural characteristics of axon terminals. Melchitzky DS, Erickson SL, Lewis DA. Neuroscience; 2006 Dec 28; 143(4):1021-30. PubMed ID: 17029800 [Abstract] [Full Text] [Related]
18. Limbic pallidal adaptations following long-term cessation of dopaminergic transmission: lack of upregulation of dopamine receptor function. Heidenreich BA, Mitrovic I, Battaglia G, Napier TC. Exp Neurol; 2004 Apr 28; 186(2):145-57. PubMed ID: 15026253 [Abstract] [Full Text] [Related]
19. Recent finding on dopaminergic transmission in the basal ganglia. Glowinski J. Adv Neurol; 1990 Apr 28; 53():67-73. PubMed ID: 2173377 [No Abstract] [Full Text] [Related]
20. Response of the GABAergic and dopaminergic mesostriatal projections to the lesion of the contralateral dopaminergic mesostriatal pathway in the rat. González-Hernández T, Barroso-Chinea P, Rodríguez M. Mov Disord; 2004 Sep 28; 19(9):1029-1042. PubMed ID: 15372592 [Abstract] [Full Text] [Related] Page: [Next] [New Search]