These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


272 related items for PubMed ID: 7821380

  • 1. The glucose transporter in the plasma membrane of the outer segments of bovine retinal rods.
    Li XB, Szerencsei RT, Schnetkamp PP.
    Exp Eye Res; 1994 Sep; 59(3):351-8. PubMed ID: 7821380
    [Abstract] [Full Text] [Related]

  • 2. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK, Heard KS, Carruthers A.
    Biochemistry; 1996 Aug 13; 35(32):10411-21. PubMed ID: 8756697
    [Abstract] [Full Text] [Related]

  • 3. Glycolytic enzymes and a GLUT-1 glucose transporter in the outer segments of rod and cone photoreceptor cells.
    Hsu SC, Molday RS.
    J Biol Chem; 1991 Nov 15; 266(32):21745-52. PubMed ID: 1939198
    [Abstract] [Full Text] [Related]

  • 4. High glucose downregulates glucose transport activity in retinal capillary pericytes but not endothelial cells.
    Mandarino LJ, Finlayson J, Hassell JR.
    Invest Ophthalmol Vis Sci; 1994 Mar 15; 35(3):964-72. PubMed ID: 8125759
    [Abstract] [Full Text] [Related]

  • 5. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes.
    Albert SG.
    Biochem Int; 1984 Jul 15; 9(1):93-103. PubMed ID: 6541046
    [Abstract] [Full Text] [Related]

  • 6. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA, Carruthers A.
    Biochemistry; 1999 May 18; 38(20):6640-50. PubMed ID: 10350483
    [Abstract] [Full Text] [Related]

  • 7. Activation of Glut1 glucose transporter in human erythrocytes.
    Zhang JZ, Ismail-Beigi F.
    Arch Biochem Biophys; 1998 Aug 01; 356(1):86-92. PubMed ID: 9681995
    [Abstract] [Full Text] [Related]

  • 8. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK, Diamond DL, Heard KS, Carruthers A.
    Biochemistry; 1996 Oct 08; 35(40):13231-9. PubMed ID: 8855962
    [Abstract] [Full Text] [Related]

  • 9. Regulation of hexose transporters of chicken embryo fibroblasts during glucose starvation.
    Tillotson LG, Yamada K, Isselbacher KJ.
    Fed Proc; 1984 May 15; 43(8):2262-4. PubMed ID: 6325251
    [Abstract] [Full Text] [Related]

  • 10. Inhibitors of protein synthesis cause increased hexose transport in cultured human fibroblasts by a mechanism other than transporter translocation.
    Germinario RJ, Manuel S, Chang Z, Leckett B.
    J Cell Physiol; 1992 Apr 15; 151(1):156-63. PubMed ID: 1560041
    [Abstract] [Full Text] [Related]

  • 11. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB, Robichaud TK, Hamill S, Sultzman LA, Carruthers A.
    Biochemistry; 2005 Apr 19; 44(15):5606-16. PubMed ID: 15823019
    [Abstract] [Full Text] [Related]

  • 12. Differentiation of erythrocyte-(GLUT1), liver-(GLUT2), and adipocyte-type (GLUT4) glucose transporters by binding of the inhibitory ligands cytochalasin B, forskolin, dipyridamole, and isobutylmethylxanthine.
    Hellwig B, Joost HG.
    Mol Pharmacol; 1991 Sep 19; 40(3):383-9. PubMed ID: 1716731
    [Abstract] [Full Text] [Related]

  • 13. Glycolysis and glucose uptake in intact outer segments isolated from bovine retinal rods.
    Lopez-Escalera R, Li XB, Szerencsei RT, Schnetkamp PP.
    Biochemistry; 1991 Sep 17; 30(37):8970-6. PubMed ID: 1892814
    [Abstract] [Full Text] [Related]

  • 14. Inhibition of hexose transport by adenosine derivatives in human erythrocytes.
    May JM.
    J Cell Physiol; 1988 May 17; 135(2):332-8. PubMed ID: 3372599
    [Abstract] [Full Text] [Related]

  • 15. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE, Cloherty EK, Zottola RJ, Carruthers A.
    Biochemistry; 1995 Aug 01; 34(30):9762-73. PubMed ID: 7626647
    [Abstract] [Full Text] [Related]

  • 16. Forskolin inhibits insulin-stimulated glucose transport in rat adipose cells by a direct interaction with the glucose transporter.
    Joost HG, Steinfelder HJ.
    Mol Pharmacol; 1987 Mar 01; 31(3):279-83. PubMed ID: 3470598
    [Abstract] [Full Text] [Related]

  • 17. Enhancement of glucose transport by vascular endothelial growth factor in retinal endothelial cells.
    Sone H, Deo BK, Kumagai AK.
    Invest Ophthalmol Vis Sci; 2000 Jun 01; 41(7):1876-84. PubMed ID: 10845612
    [Abstract] [Full Text] [Related]

  • 18. Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites.
    Klip A, Logan WJ, Li G.
    Biochim Biophys Acta; 1982 May 07; 687(2):265-80. PubMed ID: 7093257
    [Abstract] [Full Text] [Related]

  • 19. Photoaffinity labeling of insulin-sensitive hexose transporters in intact rat adipocytes. Direct evidence that latent transporters become exposed to the extracellular space in response to insulin.
    Oka Y, Czech MP.
    J Biol Chem; 1984 Jul 10; 259(13):8125-33. PubMed ID: 6376500
    [Abstract] [Full Text] [Related]

  • 20. Effects of the anticancer agent VM-26 on hexose uptake in Ehrlich cells.
    Wright SE, White JC.
    Cancer Biochem Biophys; 1989 May 10; 10(3):185-96. PubMed ID: 2776116
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.