These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
272 related items for PubMed ID: 7822409
1. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(alpha,beta)-methylene-diphosphonate. Hyman AA, Chrétien D, Arnal I, Wade RH. J Cell Biol; 1995 Jan; 128(1-2):117-25. PubMed ID: 7822409 [Abstract] [Full Text] [Related]
2. Structural changes at microtubule ends accompanying GTP hydrolysis: information from a slowly hydrolyzable analogue of GTP, guanylyl (alpha,beta)methylenediphosphonate. Müller-Reichert T, Chrétien D, Severin F, Hyman AA. Proc Natl Acad Sci U S A; 1998 Mar 31; 95(7):3661-6. PubMed ID: 9520422 [Abstract] [Full Text] [Related]
3. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Hyman AA, Salser S, Drechsel DN, Unwin N, Mitchison TJ. Mol Biol Cell; 1992 Oct 31; 3(10):1155-67. PubMed ID: 1421572 [Abstract] [Full Text] [Related]
4. The free energy for hydrolysis of a microtubule-bound nucleotide triphosphate is near zero: all of the free energy for hydrolysis is stored in the microtubule lattice. Caplow M, Ruhlen RL, Shanks J. J Cell Biol; 1994 Nov 31; 127(3):779-88. PubMed ID: 7962059 [Abstract] [Full Text] [Related]
5. Evidence that a single monolayer tubulin-GTP cap is both necessary and sufficient to stabilize microtubules. Caplow M, Shanks J. Mol Biol Cell; 1996 Apr 31; 7(4):663-75. PubMed ID: 8730106 [Abstract] [Full Text] [Related]
6. Thermodynamic and structural analysis of microtubule assembly: the role of GTP hydrolysis. Vulevic B, Correia JJ. Biophys J; 1997 Mar 31; 72(3):1357-75. PubMed ID: 9138581 [Abstract] [Full Text] [Related]
7. Islands containing slowly hydrolyzable GTP analogs promote microtubule rescues. Tropini C, Roth EA, Zanic M, Gardner MK, Howard J. PLoS One; 2012 Mar 31; 7(1):e30103. PubMed ID: 22272281 [Abstract] [Full Text] [Related]
8. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy. Yajima H, Ogura T, Nitta R, Okada Y, Sato C, Hirokawa N. J Cell Biol; 2012 Aug 06; 198(3):315-22. PubMed ID: 22851320 [Abstract] [Full Text] [Related]
9. Temperature dependence rigidity of non-taxol stabilized single microtubules. Kawaguchi K, Yamaguchi A. Biochem Biophys Res Commun; 2010 Nov 05; 402(1):66-9. PubMed ID: 20920471 [Abstract] [Full Text] [Related]
10. Straight GDP-tubulin protofilaments form in the presence of taxol. Elie-Caille C, Severin F, Helenius J, Howard J, Muller DJ, Hyman AA. Curr Biol; 2007 Oct 23; 17(20):1765-70. PubMed ID: 17919908 [Abstract] [Full Text] [Related]
18. Role of guanine nucleotides in the vinblastine-induced self-association of tubulin: effects of guanosine alpha,beta-methylenetriphosphate and guanosine alpha,beta-methylenediphosphate. Vulevic B, Lobert S, Correia JJ. Biochemistry; 1997 Oct 21; 36(42):12828-35. PubMed ID: 9335540 [Abstract] [Full Text] [Related]
19. Microtubule elongation and guanosine 5'-triphosphate hydrolysis. Role of guanine nucleotides in microtubule dynamics. Carlier MF, Didry D, Pantaloni D. Biochemistry; 1987 Jul 14; 26(14):4428-37. PubMed ID: 3663597 [Abstract] [Full Text] [Related]