These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Formamide-induced dissociation and inactivation of Escherichia coli alkaline phosphatase. Metal-dependent reassociation and restoration of activity from isolated subunits. Falk MC, Bethune JL, Vallee BL. Biochemistry; 1982 Mar 30; 21(7):1471-8. PubMed ID: 7044413 [Abstract] [Full Text] [Related]
8. Role of metal ions in Escherichia coli alkaline phosphatase. A study of the metal-water interaction by nuclear relaxation rate measurements on water protons. Zukin RS, Hollis DP. J Biol Chem; 1975 Feb 10; 250(3):835-42. PubMed ID: 163241 [Abstract] [Full Text] [Related]
13. 31 P NMR studies on phosphate binding to the Zn 2+ , Co 2+ and Mn 2+ forms of escherichia coli alkaline phosphatase. Csopak H, Drakenberg T. FEBS Lett; 1973 Mar 15; 30(3):296-300. PubMed ID: 4573438 [No Abstract] [Full Text] [Related]
14. Hydrogen-tritium exchange of partially and fully reconstituted zinc and cobalt alkaline phosphatase of Escherichia coli. Brown EM, Ulmer DD, Vallee BL. Biochemistry; 1974 Dec 17; 13(26):5328-34. PubMed ID: 4611482 [No Abstract] [Full Text] [Related]
15. Role of metal ions in the reaction catalyzed by L-ribulose-5-phosphate 4-epimerase. Lee LV, Poyner RR, Vu MV, Cleland WW. Biochemistry; 2000 Apr 25; 39(16):4821-30. PubMed ID: 10769139 [Abstract] [Full Text] [Related]
16. Magnetic circular dichroic spectra of cobalt(II) substituted metalloenzymes. Holmquist B, Kaden TA, Vallee BL. Biochemistry; 1975 Apr 08; 14(7):1454-61. PubMed ID: 235952 [Abstract] [Full Text] [Related]
17. Conversion of a magnesium binding site into a zinc binding site by a single amino acid substitution in Escherichia coli alkaline phosphatase. Murphy JE, Xu X, Kantrowitz ER. J Biol Chem; 1993 Oct 15; 268(29):21497-500. PubMed ID: 8407998 [Abstract] [Full Text] [Related]