These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


224 related items for PubMed ID: 7828474

  • 1. A neural network approach to the prediction of pure tone thresholds with distortion product emissions.
    Kimberley BP, Kimberley BM, Roth L.
    Ear Nose Throat J; 1994 Nov; 73(11):812-3, 817-23. PubMed ID: 7828474
    [Abstract] [Full Text] [Related]

  • 2. Distortion product emission features and the prediction of pure tone thresholds.
    Kimberley BP.
    Laryngoscope; 1995 Apr; 105(4 Pt 1):349-53. PubMed ID: 7715375
    [Abstract] [Full Text] [Related]

  • 3. Evaluation of cochlear hearing disorders: normative distortion product otoacoustic emission measurements.
    Mills DM, Feeney MP, Gates GA.
    Ear Hear; 2007 Dec; 28(6):778-92. PubMed ID: 17982366
    [Abstract] [Full Text] [Related]

  • 4. Predicting pure tone thresholds in normal and hearing-impaired ears with distortion product emission and age.
    Kimberley BP, Hernadi I, Lee AM, Brown DK.
    Ear Hear; 1994 Jun; 15(3):199-209. PubMed ID: 8076718
    [Abstract] [Full Text] [Related]

  • 5. Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds.
    Hamdan AL, Abouchacra KS, Zeki Al Hazzouri AG, Zaytoun G.
    Ear Hear; 2008 Jun; 29(3):360-77. PubMed ID: 18382377
    [Abstract] [Full Text] [Related]

  • 6. Diagnosis of sensorineural hearing loss with neural networks versus logistic regression modeling of distortion product otoacoustic emissions.
    Ziavra N, Kastanioudakis I, Trikalinos TA, Skevas A, Ioannidis JP.
    Audiol Neurootol; 2004 Jun; 9(2):81-7. PubMed ID: 14981356
    [Abstract] [Full Text] [Related]

  • 7. Factors affecting sensitivity of distortion-product otoacoustic emissions to ototoxic hearing loss.
    Reavis KM, Phillips DS, Fausti SA, Gordon JS, Helt WJ, Wilmington D, Bratt GW, Konrad-Martin D.
    Ear Hear; 2008 Dec; 29(6):875-93. PubMed ID: 18753950
    [Abstract] [Full Text] [Related]

  • 8. Distortion-product otoacoustic emissions and cochlear microphonics: relationships in patients with and without endolymphatic hydrops.
    Fetterman BL.
    Laryngoscope; 2001 Jun; 111(6):946-54. PubMed ID: 11404602
    [Abstract] [Full Text] [Related]

  • 9. An objective method of analyzing cochlear versus noncochlear patterns of distortion-product otoacoustic emissions in patients with acoustic neuromas.
    Telischi F.
    Laryngoscope; 2000 Apr; 110(4):553-62. PubMed ID: 10763999
    [Abstract] [Full Text] [Related]

  • 10. Comparison of auditory steady-state responses and auditory brainstem responses in audiometric assessment of adults with sensorineural hearing loss.
    Lin YH, Ho HC, Wu HP.
    Auris Nasus Larynx; 2009 Apr; 36(2):140-5. PubMed ID: 18620826
    [Abstract] [Full Text] [Related]

  • 11. Distortion product emissions and sensorineural hearing loss.
    Kimberley BP, Nelson DA.
    J Otolaryngol; 1989 Dec; 18(7):365-9. PubMed ID: 2593222
    [Abstract] [Full Text] [Related]

  • 12. Distortion product otoacoustic emissions in the elderly.
    Karzon RK, Garcia P, Peterein JL, Gates GA.
    Am J Otol; 1994 Sep; 15(5):596-605. PubMed ID: 8572058
    [Abstract] [Full Text] [Related]

  • 13. Predicting hearing loss from otoacoustic emissions using an artificial neural network.
    de Waal R, Hugo R, Soer M, Krüger JJ.
    S Afr J Commun Disord; 2002 Sep; 49():28-39. PubMed ID: 14968700
    [Abstract] [Full Text] [Related]

  • 14. Otoacoustic emissions in early noise-induced hearing loss.
    Shupak A, Tal D, Sharoni Z, Oren M, Ravid A, Pratt H.
    Otol Neurotol; 2007 Sep; 28(6):745-52. PubMed ID: 17721363
    [Abstract] [Full Text] [Related]

  • 15. [Study of the correspondence between pure tone and distorsion product otoacoustic emissions audiometrics: basis for an objective cochlear audiometrics model].
    Jürgens A, Buisan A, Canela M, Abelló P.
    Acta Otorrinolaringol Esp; 1999 May; 50(4):253-9. PubMed ID: 10431072
    [Abstract] [Full Text] [Related]

  • 16. Distortion product otoacoustic emissions and tympanometric measurements in an adult population-based study.
    Uchida Y, Ando F, Nakata S, Ueda H, Nakashima T, Niino N, Shimokata H.
    Auris Nasus Larynx; 2006 Dec; 33(4):397-401. PubMed ID: 16753276
    [Abstract] [Full Text] [Related]

  • 17. Frequency specificity of 80-Hz amplitude-modulation following response.
    Aoyagi M, Yamazaki Y, Yokota M, Fuse T, Suzuki Y, Itoh S, Watanabe T.
    Acta Otolaryngol Suppl; 1996 Dec; 522():6-10. PubMed ID: 8740802
    [Abstract] [Full Text] [Related]

  • 18. [Analysis of evoked otoacoustic emission in normal pure tone hearing thresholds patients with aural fullness].
    Wu F, Liu J, Zhang Z, Bi W, Shen N.
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2009 Nov; 23(22):1023-6. PubMed ID: 20359097
    [Abstract] [Full Text] [Related]

  • 19. Correlation of transiently evoked otoacoustic emission measures to auditory thresholds.
    Balatsouras D, Kaberos A, Karapantzos E, Homsioglou E, Economou NC, Korres S.
    Med Sci Monit; 2004 Feb; 10(2):MT24-30. PubMed ID: 14737052
    [Abstract] [Full Text] [Related]

  • 20. Otoacoustic emissions, pure-tone audiometry, and self-reported hearing.
    Engdahl B, Tambs K, Hoffman HJ.
    Int J Audiol; 2013 Feb; 52(2):74-82. PubMed ID: 23216196
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.