These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
400 related items for PubMed ID: 7832434
21. Opening of ATP-sensitive K(+) (KATP) channels enhance hydroxyl radical generation induced by MPP(+) in rat striatum. Obata T, Nakashima M. J Neurol Sci; 2016 Jul 15; 366():180-183. PubMed ID: 27288802 [Abstract] [Full Text] [Related]
22. Evidence for dopamine-derived hydroxyl radical formation in the nigrostriatal system in response to axotomy. Venero JL, Revuelta M, Atiki L, Santiago M, Toms-Camardiel MC, Cano J, Machado A. Free Radic Biol Med; 2003 Jan 01; 34(1):111-23. PubMed ID: 12498986 [Abstract] [Full Text] [Related]
23. EGb761 protects against nigrostriatal dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice: role of oxidative stress. Rojas P, Serrano-García N, Mares-Sámano JJ, Medina-Campos ON, Pedraza-Chaverri J, Ogren SO. Eur J Neurosci; 2008 Jul 01; 28(1):41-50. PubMed ID: 18662333 [Abstract] [Full Text] [Related]
24. Paradoxical effects of adenosine receptor ligands on hydroxyl radical generation by L-DOPA in the rat striatum. Gołembiowska K, Dziubina A, Kowalska M, Kamińska K. Pharmacol Rep; 2008 Jul 01; 60(3):319-30. PubMed ID: 18622056 [Abstract] [Full Text] [Related]
25. Manganese-induced hydroxyl radical formation in rat striatum is not attenuated by dopamine depletion or iron chelation in vivo. Sloot WN, Korf J, Koster JF, De Wit LE, Gramsbergen JB. Exp Neurol; 1996 Apr 01; 138(2):236-45. PubMed ID: 8620922 [Abstract] [Full Text] [Related]
26. New horizons in molecular mechanisms underlying Parkinson's disease and in our understanding of the neuroprotective effects of selegiline. Gerlach M, Desser H, Youdim MB, Riederer P. J Neural Transm Suppl; 1996 Apr 01; 48():7-21. PubMed ID: 8988458 [Abstract] [Full Text] [Related]
27. Protective effect of histidine on para-nonylphenol-enhanced hydroxyl free radical generation induced by 1-methyl-4-phenylpyridinium ion (MPP+) in rat striatum. Obata T, Kubota S, Yamanaka Y. Biochim Biophys Acta; 2001 Dec 05; 1568(2):171-5. PubMed ID: 11750765 [Abstract] [Full Text] [Related]
28. Rotenone increases glutamate-induced dopamine release but does not affect hydroxyl-free radical formation in rat striatum. Leng A, Feldon J, Ferger B. Synapse; 2003 Dec 01; 50(3):240-50. PubMed ID: 14515342 [Abstract] [Full Text] [Related]
29. Dopamine efflux by MPTP and hydroxyl radical generation. Obata T. J Neural Transm (Vienna); 2002 Sep 01; 109(9):1159-80. PubMed ID: 12203043 [Abstract] [Full Text] [Related]
30. The use of salicylate hydroxylation to detect hydroxyl radical generation in ischemic and traumatic brain injury. Reversal by tirilazad mesylate (U-74006F). Althaus JS, Andrus PK, Williams CM, VonVoigtlander PF, Cazers AR, Hall ED. Mol Chem Neuropathol; 1993 Oct 01; 20(2):147-62. PubMed ID: 8297419 [Abstract] [Full Text] [Related]
31. Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine. Giovanni A, Liang LP, Hastings TG, Zigmond MJ. J Neurochem; 1995 Apr 01; 64(4):1819-25. PubMed ID: 7891110 [Abstract] [Full Text] [Related]
32. Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation through dopamine autooxidation in the caudate nucleus: effects of MPP+. Chiueh CC, Krishna G, Tulsi P, Obata T, Lang K, Huang SJ, Murphy DL. Free Radic Biol Med; 1992 Nov 01; 13(5):581-3. PubMed ID: 1334031 [Abstract] [Full Text] [Related]
33. [Medicamentous strategy for improving the quality of life in the senescence]. Knoll J. Wien Med Wochenschr Suppl; 1986 Nov 01; 98():1-18. PubMed ID: 3097965 [Abstract] [Full Text] [Related]
34. Evidence for formation of hydroxyl radicals during reperfusion after global cerebral ischaemia in rats using salicylate trapping and microdialysis. Christensen T, Bruhn T, Balchen T, Diemer NH. Neurobiol Dis; 1994 Dec 01; 1(3):131-8. PubMed ID: 9173992 [Abstract] [Full Text] [Related]
35. Detection of free radical activity during transient global ischemia and recirculation: effects of intraischemic brain temperature modulation. Globus MY, Busto R, Lin B, Schnippering H, Ginsberg MD. J Neurochem; 1995 Sep 01; 65(3):1250-6. PubMed ID: 7643104 [Abstract] [Full Text] [Related]
37. Role of dopamine autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism. Chiueh CC, Miyake H, Peng MT. Adv Neurol; 1993 Jul 01; 60():251-8. PubMed ID: 8380519 [No Abstract] [Full Text] [Related]
38. Effect of ferrous iron on the generation of hydroxyl free radicals by liver microdialysis perfusion of salicylate. Obata T, Hosokawa H, Yamanaka Y. Comp Biochem Physiol C Comp Pharmacol Toxicol; 1993 Nov 01; 106(3):629-34. PubMed ID: 7905800 [Abstract] [Full Text] [Related]
39. Neuroprotective effects of madecassoside in early stage of Parkinson's disease induced by MPTP in rats. Xu CL, Qu R, Zhang J, Li LF, Ma SP. Fitoterapia; 2013 Oct 01; 90():112-8. PubMed ID: 23876367 [Abstract] [Full Text] [Related]
40. Potassium chloride depolarization enhances MPP+-induced hydroxyl radical generation in the rat striatum. Obata T, Aomine M, Yamanaka Y. Brain Res; 2000 Jan 10; 852(2):488-91. PubMed ID: 10678780 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]