These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


352 related items for PubMed ID: 7838122

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Calcium homeostasis in trigeminal ganglion cell bodies.
    Gover TD, Moreira TH, Kao JP, Weinreich D.
    Cell Calcium; 2007 Apr; 41(4):389-96. PubMed ID: 17046058
    [Abstract] [Full Text] [Related]

  • 23. Mitochondria buffer non-toxic calcium loads and release calcium through the mitochondrial permeability transition pore and sodium/calcium exchanger in rat basal forebrain neurons.
    Murchison D, Griffith WH.
    Brain Res; 2000 Jan 31; 854(1-2):139-51. PubMed ID: 10784115
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel.
    Kannurpatti SS, Joshi PG, Joshi NB.
    Neurochem Res; 2000 Dec 31; 25(12):1527-36. PubMed ID: 11152381
    [Abstract] [Full Text] [Related]

  • 27. Imaging of caffeine-inducible release of intracellular calcium in cultured embryonic mouse telencephalic neurons.
    Tsai TD, Barish ME.
    J Neurobiol; 1995 Jun 31; 27(2):252-65. PubMed ID: 7658204
    [Abstract] [Full Text] [Related]

  • 28. Glutamate-induced calcium increase mediates magnesium release from mitochondria in rat hippocampal neurons.
    Shindo Y, Fujimoto A, Hotta K, Suzuki K, Oka K.
    J Neurosci Res; 2010 Nov 01; 88(14):3125-32. PubMed ID: 20740499
    [Abstract] [Full Text] [Related]

  • 29. Muscarinic m3 receptors and dynamics of intracellular Ca2+ cerebellar granule neurons.
    Fohrman EB, de Erausquin G, Costa E, Wojcik WJ.
    Eur J Pharmacol; 1993 May 15; 245(3):263-71. PubMed ID: 8101492
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Ca2+ homeostasis and exocytosis in carotid glomus cells: role of mitochondria.
    Yan L, Lee AK, Tse FW, Tse A.
    Cell Calcium; 2012 Feb 15; 51(2):155-63. PubMed ID: 22209034
    [Abstract] [Full Text] [Related]

  • 34. The leading role of mitochondrial depolarization in the mechanism of glutamate-induced disruptions in Ca2+ homeostasis.
    Khodorov BI, Storozhevykh TP, Surin AM, Yuryavichyus AI, Sorokina EG, Borodin AV, Vinskaya NP, Khaspekov LG, Pinelis VG.
    Neurosci Behav Physiol; 2002 Feb 15; 32(5):541-7. PubMed ID: 12403008
    [Abstract] [Full Text] [Related]

  • 35. Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells.
    Smets I, Caplanusi A, Despa S, Molnar Z, Radu M, VandeVen M, Ameloot M, Steels P.
    Am J Physiol Renal Physiol; 2004 Apr 15; 286(4):F784-94. PubMed ID: 14665432
    [Abstract] [Full Text] [Related]

  • 36. Intracellular and plasma membrane-initiated pathways involved in the [Ca2+]i elevations induced by iodothyronines (T3 and T2) in pituitary GH3 cells.
    Del Viscovo A, Secondo A, Esposito A, Goglia F, Moreno M, Canzoniero LM.
    Am J Physiol Endocrinol Metab; 2012 Jun 01; 302(11):E1419-30. PubMed ID: 22414808
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.