These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 7838927

  • 1. A comparison of the acute effects of a tricyclic and a MAOI antidepressant on septal driving of hippocampal rhythmical slow activity.
    Zhu XO, McNaughton N.
    Psychopharmacology (Berl); 1994 Mar; 114(2):337-44. PubMed ID: 7838927
    [Abstract] [Full Text] [Related]

  • 2. Effects of long-term administration of antidepressants on septal driving of hippocampal RSA.
    Zhu XO, McNaughton N.
    Int J Neurosci; 1994 Nov; 79(1-2):91-8. PubMed ID: 7744554
    [Abstract] [Full Text] [Related]

  • 3. Effects of long-term administration of phenelzine on reticular-elicited hippocampal rhythmical slow activity.
    Zhu XO, McNaughton N.
    Neurosci Res; 1995 Feb; 21(4):311-6. PubMed ID: 7777221
    [Abstract] [Full Text] [Related]

  • 4. Effects of long-term administration of imipramine on reticular-elicited hippocampal rhythmical slow activity.
    Zhu XO, McNaughton N.
    Psychopharmacology (Berl); 1991 Feb; 105(3):433-8. PubMed ID: 1798837
    [Abstract] [Full Text] [Related]

  • 5. Minimal changes with long-term administration of anxiolytics on septal driving of hippocampal rhythmical slow activity.
    Zhu XO, McNaughton N.
    Psychopharmacology (Berl); 1995 Mar; 118(1):93-100. PubMed ID: 7597127
    [Abstract] [Full Text] [Related]

  • 6. Differential effects of imipramine and phenelzine on corticosteroid receptor gene expression in mouse brain: potential relevance to antidepressant response.
    Heydendael W, Jacobson L.
    Brain Res; 2008 Oct 31; 1238():93-107. PubMed ID: 18761333
    [Abstract] [Full Text] [Related]

  • 7. Depletion of brain norepinephrine: differential influence on anxiolyic treatment effects.
    Fontana DJ, McMiller LV, Commissaris RL.
    Psychopharmacology (Berl); 1999 Apr 31; 143(2):197-208. PubMed ID: 10326783
    [Abstract] [Full Text] [Related]

  • 8. Effects of long-term administration of anxiolytics on reticular-elicited hippocampal rhythmical slow activity.
    Zhu XO, McNaughton N.
    Neuropharmacology; 1991 Oct 31; 30(10):1095-9. PubMed ID: 1684647
    [Abstract] [Full Text] [Related]

  • 9. Effects of phenelzine and imipramine on the steady-state levels of mRNAs that encode glutamic acid decarboxylase (GAD67 and GAD65), the GABA transporter GAT-1 and GABA transaminase in rat cortex.
    Lai CT, Tanay VA, Charrois GJ, Baker GB, Bateson AN.
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Jan 31; 357(1):32-8. PubMed ID: 9459570
    [Abstract] [Full Text] [Related]

  • 10. Common effects of chronically administered antipanic drugs on brainstem GABA(A) receptor subunit gene expression.
    Tanay VM, Greenshaw AJ, Baker GB, Bateson AN.
    Mol Psychiatry; 2001 Jul 31; 6(4):404-12. PubMed ID: 11443524
    [Abstract] [Full Text] [Related]

  • 11. The interaction of serotonin depletion with anxiolytics and antidepressants on reticular-elicited hippocampal RSA.
    Zhu XO, McNaughton N.
    Neuropharmacology; 1994 Dec 31; 33(12):1597-605. PubMed ID: 7760982
    [Abstract] [Full Text] [Related]

  • 12. Reticular elicitation of hippocampal slow waves: common effects of some anxiolytic drugs.
    McNaughton N, Richardson J, Gore C.
    Neuroscience; 1986 Nov 31; 19(3):899-903. PubMed ID: 2879256
    [Abstract] [Full Text] [Related]

  • 13. The antidepressant drug phenelzine produces antianxiety effects in the plus-maze and increases in rat brain GABA.
    Paslawski T, Treit D, Baker GB, George M, Coutts RT.
    Psychopharmacology (Berl); 1996 Sep 31; 127(1):19-24. PubMed ID: 8880939
    [Abstract] [Full Text] [Related]

  • 14. Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments.
    Balu DT, Hoshaw BA, Malberg JE, Rosenzweig-Lipson S, Schechter LE, Lucki I.
    Brain Res; 2008 May 23; 1211():37-43. PubMed ID: 18433734
    [Abstract] [Full Text] [Related]

  • 15. Chronic administration of antipanic drugs alters rat brainstem GABAA receptor subunit mRNA levels.
    Tanay VA, Glencorse TA, Greenshaw AJ, Baker GB, Bateson AN.
    Neuropharmacology; 1996 May 23; 35(9-10):1475-82. PubMed ID: 9014163
    [Abstract] [Full Text] [Related]

  • 16. Behavioral effects of phenelzine in an experimental model for screening anxiolytic and anti-panic drugs: correlation with changes in monoamine-oxidase activity and monoamine levels.
    Griebel G, Curet O, Perrault G, Sanger DJ.
    Neuropharmacology; 1998 Jul 23; 37(7):927-35. PubMed ID: 9776388
    [Abstract] [Full Text] [Related]

  • 17. Antidepressant-like properties of some serotonin receptor ligands and calcium channel antagonists measured with the forced swimming test in mice.
    Biała G.
    Pol J Pharmacol; 1998 Jul 23; 50(2):117-24. PubMed ID: 9798263
    [Abstract] [Full Text] [Related]

  • 18. The effect of some tricyclic antidepressants on the inhibition of mouse brain monoamine oxidase in-vivo by phenelzine.
    Green AL, O'Grady JE, Vass M.
    J Pharm Pharmacol; 1989 Jan 23; 41(1):50-1. PubMed ID: 2565965
    [Abstract] [Full Text] [Related]

  • 19. Interactions of a non-selective monoamine oxidase inhibitor, phenelzine, with inhibitors of 5-hydroxytryptamine, dopamine or noradrenaline re-uptake.
    Marley E, Wozniak KM.
    J Psychiatr Res; 1984 Jan 23; 18(2):173-89. PubMed ID: 6747915
    [Abstract] [Full Text] [Related]

  • 20. Chronic treatment with imipramine or mirtazapine antagonizes stress- and FG7142-induced increase in cortical norepinephrine output in freely moving rats.
    Dazzi L, Ladu S, Spiga F, Vacca G, Rivano A, Pira L, Biggio G.
    Synapse; 2002 Jan 23; 43(1):70-7. PubMed ID: 11746735
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.