These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
143 related items for PubMed ID: 7840222
1. KCa channel antagonists reduce NO donor-mediated relaxation of vascular and tracheal smooth muscle. Bialecki RA, Stinson-Fisher C. Am J Physiol; 1995 Jan; 268(1 Pt 1):L152-9. PubMed ID: 7840222 [Abstract] [Full Text] [Related]
2. Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery. Plane F, Wiley KE, Jeremy JY, Cohen RA, Garland CJ. Br J Pharmacol; 1998 Apr; 123(7):1351-8. PubMed ID: 9579730 [Abstract] [Full Text] [Related]
3. Modulation of nitric oxide-dependent relaxation of pig tracheal smooth muscle by inhibitors of guanylyl cyclase and calcium activated potassium channels. Kannan MS, Johnson DE. Life Sci; 1995 Apr; 56(25):2229-38. PubMed ID: 7540707 [Abstract] [Full Text] [Related]
4. Direct activation of K(Ca) channel in airway smooth muscle by nitric oxide: involvement of a nitrothiosylation mechanism? Abderrahmane A, Salvail D, Dumoulin M, Garon J, Cadieux A, Rousseau E. Am J Respir Cell Mol Biol; 1998 Sep; 19(3):485-97. PubMed ID: 9730877 [Abstract] [Full Text] [Related]
5. Evidence that potassium channels make a major contribution to SIN-1-evoked relaxation of rat isolated mesenteric artery. Plane F, Hurrell A, Jeremy JY, Garland CJ. Br J Pharmacol; 1996 Dec; 119(8):1557-62. PubMed ID: 8982501 [Abstract] [Full Text] [Related]
6. Relaxing effects of NO donors on guinea pig trachea in vitro are mediated by calcium-sensitive potassium channels. Vaali K, Li L, Paakkari I, Vapaatalo H. J Pharmacol Exp Ther; 1998 Jul; 286(1):110-4. PubMed ID: 9655848 [Abstract] [Full Text] [Related]
7. Nitrovasodilators relax mesenteric microvessels by cGMP-induced stimulation of Ca-activated K channels. Carrier GO, Fuchs LC, Winecoff AP, Giulumian AD, White RE. Am J Physiol; 1997 Jul; 273(1 Pt 2):H76-84. PubMed ID: 9249477 [Abstract] [Full Text] [Related]
8. Relaxation to authentic nitric oxide and SIN-1 in rat isolated mesenteric arteries: variable role for smooth muscle hyperpolarization. Plane F, Sampson LJ, Smith JJ, Garland CJ. Br J Pharmacol; 2001 Jul; 133(5):665-72. PubMed ID: 11429390 [Abstract] [Full Text] [Related]
9. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery. White R, Hiley CR. Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801 [Abstract] [Full Text] [Related]
10. Mechanisms of relaxations of bovine isolated bronchioles by the nitric oxide donor, GEA 3175. Hernández M, Elmedal B, Mulvany MJ, Simonsen U. Br J Pharmacol; 1998 Mar; 123(5):895-905. PubMed ID: 9535018 [Abstract] [Full Text] [Related]
11. NO-induced relaxation of labouring and non-labouring human myometrium is not mediated by cyclic GMP. Buxton IL, Kaiser RA, Malmquist NA, Tichenor S. Br J Pharmacol; 2001 Sep; 134(1):206-14. PubMed ID: 11522613 [Abstract] [Full Text] [Related]
12. In vitro simultaneous measurements of relaxation and nitric oxide concentration in rat superior mesenteric artery. Simonsen U, Wadsworth RM, Buus NH, Mulvany MJ. J Physiol; 1999 Apr 01; 516 ( Pt 1)(Pt 1):271-82. PubMed ID: 10066940 [Abstract] [Full Text] [Related]
13. NO(+) but not NO radical relaxes airway smooth muscle via cGMP-independent release of internal Ca(2+). Janssen LJ, Premji M, Lu-Chao H, Cox G, Keshavjee S. Am J Physiol Lung Cell Mol Physiol; 2000 May 01; 278(5):L899-905. PubMed ID: 10781419 [Abstract] [Full Text] [Related]
14. Cyclic GMP regulates cromakalim-induced relaxation in the rat aortic smooth muscle: role of cyclic GMP in K(ATP)-channels. Wu CC, Chen SJ, Yen MH. Life Sci; 1999 May 01; 64(26):2471-8. PubMed ID: 10403506 [Abstract] [Full Text] [Related]
15. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF. Zygmunt PM, Plane F, Paulsson M, Garland CJ, Högestätt ED. Br J Pharmacol; 1998 Jul 01; 124(5):992-1000. PubMed ID: 9692786 [Abstract] [Full Text] [Related]
16. Contribution of nitric oxide, prostanoids and Ca(2+)-activated K+ channels to the relaxant response of bradykinin in the guinea pig bronchus in vitro. Mazzuco TL, André E, Calixto JB. Naunyn Schmiedebergs Arch Pharmacol; 2000 Apr 01; 361(4):383-90. PubMed ID: 10763852 [Abstract] [Full Text] [Related]
17. Effects of nitric oxide on the Ca2+-activated potassium channels in smooth muscle cells of the human corpus cavernosum. Lee SW, Kang TM. Urol Res; 2001 Oct 01; 29(5):359-65. PubMed ID: 11762799 [Abstract] [Full Text] [Related]
18. Regulation of Ca(2+)-activated K+ channels in pulmonary vascular smooth muscle cells: role of nitric oxide. Peng W, Hoidal JR, Farrukh IS. J Appl Physiol (1985); 1996 Sep 01; 81(3):1264-72. PubMed ID: 8889762 [Abstract] [Full Text] [Related]
19. Role of activation of calcium-sensitive K+ channels in NO- and hypoxia-induced pial artery vasodilation. Armstead WM. Am J Physiol; 1997 Apr 01; 272(4 Pt 2):H1785-90. PubMed ID: 9139963 [Abstract] [Full Text] [Related]
20. Dissociation of cGMP accumulation and relaxation in myometrial smooth muscle: effects of S-nitroso-N-acetylpenicillamine and 3-morpholinosyndonimine. Tichenor SD, Malmquist NA, Buxton IL. Cell Signal; 2003 Aug 01; 15(8):763-72. PubMed ID: 12781869 [Abstract] [Full Text] [Related] Page: [Next] [New Search]