These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
256 related items for PubMed ID: 7844110
1. Transport of vitamin C in animal and human cells. Goldenberg H, Schweinzer E. J Bioenerg Biomembr; 1994 Aug; 26(4):359-67. PubMed ID: 7844110 [Abstract] [Full Text] [Related]
2. Up-regulation and polarized expression of the sodium-ascorbic acid transporter SVCT1 in post-confluent differentiated CaCo-2 cells. Maulén NP, Henríquez EA, Kempe S, Cárcamo JG, Schmid-Kotsas A, Bachem M, Grünert A, Bustamante ME, Nualart F, Vera JC. J Biol Chem; 2003 Mar 14; 278(11):9035-41. PubMed ID: 12381735 [Abstract] [Full Text] [Related]
3. Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells. Spielholz C, Golde DW, Houghton AN, Nualart F, Vera JC. Cancer Res; 1997 Jun 15; 57(12):2529-37. PubMed ID: 9192836 [Abstract] [Full Text] [Related]
4. Regulation of vitamin C transport. Wilson JX. Annu Rev Nutr; 2005 Jun 15; 25():105-25. PubMed ID: 16011461 [Abstract] [Full Text] [Related]
5. 6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+-dependent vitamin C transporter but not glucose transporter pathways. Corpe CP, Lee JH, Kwon O, Eck P, Narayanan J, Kirk KL, Levine M. J Biol Chem; 2005 Feb 18; 280(7):5211-20. PubMed ID: 15590689 [Abstract] [Full Text] [Related]
6. Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid. Vera JC, Rivas CI, Zhang RH, Farber CM, Golde DW. Blood; 1994 Sep 01; 84(5):1628-34. PubMed ID: 8068952 [Abstract] [Full Text] [Related]
7. Intracellular accumulation of ascorbic acid is inhibited by flavonoids via blocking of dehydroascorbic acid and ascorbic acid uptakes in HL-60, U937 and Jurkat cells. Park JB, Levine M. J Nutr; 2000 May 01; 130(5):1297-302. PubMed ID: 10801933 [Abstract] [Full Text] [Related]
8. Vitamin C uptake and recycling among normal and tumor cells from the central nervous system. Astuya A, Caprile T, Castro M, Salazar K, García Mde L, Reinicke K, Rodríguez F, Vera JC, Millán C, Ulloa V, Low M, Martínez F, Nualart F. J Neurosci Res; 2000 May 01; 79(1-2):146-56. PubMed ID: 15578707 [Abstract] [Full Text] [Related]
9. Low Red Blood Cell Vitamin C Concentrations Induce Red Blood Cell Fragility: A Link to Diabetes Via Glucose, Glucose Transporters, and Dehydroascorbic Acid. Tu H, Li H, Wang Y, Niyyati M, Wang Y, Leshin J, Levine M. EBioMedicine; 2015 Nov 01; 2(11):1735-50. PubMed ID: 26870799 [Abstract] [Full Text] [Related]
10. Accumulation of vitamin C (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms. Welch RW, Wang Y, Crossman A, Park JB, Kirk KL, Levine M. J Biol Chem; 1995 May 26; 270(21):12584-92. PubMed ID: 7759506 [Abstract] [Full Text] [Related]
11. Stromal cell oxidation: a mechanism by which tumors obtain vitamin C. Agus DB, Vera JC, Golde DW. Cancer Res; 1999 Sep 15; 59(18):4555-8. PubMed ID: 10493506 [Abstract] [Full Text] [Related]
12. Cerebral astrocytes transport ascorbic acid and dehydroascorbic acid through distinct mechanisms regulated by cyclic AMP. Siushansian R, Tao L, Dixon SJ, Wilson JX. J Neurochem; 1997 Jun 15; 68(6):2378-85. PubMed ID: 9166731 [Abstract] [Full Text] [Related]
13. Chemical Transport Knockout for Oxidized Vitamin C, Dehydroascorbic Acid, Reveals Its Functions in vivo. Tu H, Wang Y, Li H, Brinster LR, Levine M. EBioMedicine; 2017 Sep 15; 23():125-135. PubMed ID: 28851583 [Abstract] [Full Text] [Related]
14. Resolution of the facilitated transport of dehydroascorbic acid from its intracellular accumulation as ascorbic acid. Vera JC, Rivas CI, Velásquez FV, Zhang RH, Concha II, Golde DW. J Biol Chem; 1995 Oct 06; 270(40):23706-12. PubMed ID: 7559541 [Abstract] [Full Text] [Related]
15. Vitamin C crosses the blood-brain barrier in the oxidized form through the glucose transporters. Agus DB, Gambhir SS, Pardridge WM, Spielholz C, Baselga J, Vera JC, Golde DW. J Clin Invest; 1997 Dec 01; 100(11):2842-8. PubMed ID: 9389750 [Abstract] [Full Text] [Related]
16. [Cellular and intracellular transport of vitamin C. The physiologic aspects]. Szarka A, Lőrincz T. Orv Hetil; 2013 Oct 20; 154(42):1651-6. PubMed ID: 24121217 [Abstract] [Full Text] [Related]
17. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Vera JC, Rivas CI, Fischbarg J, Golde DW. Nature; 1993 Jul 01; 364(6432):79-82. PubMed ID: 8316303 [Abstract] [Full Text] [Related]
18. Transport mechanisms for vitamin C in the JAR human placental choriocarcinoma cell line. Prasad PD, Huang W, Wang H, Leibach FH, Ganapathy V. Biochim Biophys Acta; 1998 Feb 02; 1369(1):141-51. PubMed ID: 9528682 [Abstract] [Full Text] [Related]
19. Are diabetic neuropathy, retinopathy and nephropathy caused by hyperglycemic exclusion of dehydroascorbate uptake by glucose transporters? Root-Bernstein R, Busik JV, Henry DN. J Theor Biol; 2002 Jun 07; 216(3):345-59. PubMed ID: 12183123 [Abstract] [Full Text] [Related]
20. Interactions among ascorbate, dehydroascorbate and glucose transport in cultured hippocampal neurons and glia. Patel M, McIntosh L, Bliss T, Ho D, Sapolsky R. Brain Res; 2001 Oct 19; 916(1-2):127-35. PubMed ID: 11597599 [Abstract] [Full Text] [Related] Page: [Next] [New Search]